解:(I)證明:連結BD,在菱形ABCD中,∠BAD=60
0,∴△ABD為正三角形,
∵E為AB的中點,∴ED⊥AB (1分)
在直六面體ABCD-A
1B
1C
1D
1中:
平面ABB
1A
1⊥平面ABCD且交于AB,∵ED

面ABCD∴ED⊥面ABB
1A
1(3分)
∴平面A
1ED⊥平面ABB
1A
1(4分)
(II)解:由(I)知:ED⊥面ABB
1A
1∵A
1E

面ABB
1A
1∴A
1E⊥ED
又在直平行六面體ABCD-A
1B
1C
1D
1中:AA
1⊥面ABCD,
由三垂線定理的逆定理知:AE⊥ED,∴∠A
1EA=60
0(5分)
取BB
1的中點F,連EF.AB
1,則EF


,在直平行六面體ABCD-A
1B
1C
1D
1中:AB
1
DC
1∴EF


∴E.F.C
1、D四點共面(6分)
∵ED⊥面ABB
1A
1且EF

面ABB
1A
1∴EF⊥ED∴∠A
1EF為二面角A
1-ED-C
1的平面角(7分)
在Rt△A
1AE中:

,

在Rt△EBF中:

,
在Rt△A
1B
1F中:

∴在Rt△A
1EF中:

,∴二面角A
1-ED-C
1的余弦值為

(9分)
(III)過F作FG⊥A
1E交A
1E于G點∵平面A
1ED⊥面ABB
1A
1且平面A
1ED∩面ABB
1A
1=A
1E∴FG⊥平面A
1ED,
即:FG是點F到平面A
1ED的距離(11分)
在Rt△EGF中:

∴

∴

(13分)
∵EF


且E.D∈面A
1ED∴點C
1到平面A
1ED的距離為

(14分)