日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

2.正三棱柱ABC-A1B1C1的側(cè)棱長為3,AB=4,D是A1C1的中點(diǎn),則AD與面B1DC所成角的正弦值為$\frac{12}{13}$;點(diǎn)E是BC中點(diǎn),則過A,D,E三點(diǎn)的截面面積是$\frac{3}{2}\sqrt{30}$.

分析 以A為原點(diǎn),在平面ABC內(nèi)過A作AC的垂直為x 軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AD與面B1DC所成角的正弦值和過A,D,E三點(diǎn)的截面面積.

解答 解:∵正三棱柱ABC-A1B1C1的側(cè)棱長為3,AB=4,D是A1C1的中點(diǎn),
∴以A為原點(diǎn),在平面ABC內(nèi)過A作AC的垂直為x 軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
A(0,0,0),D(0,2,3),B1(2$\sqrt{3}$,2,3),C(0,4,0),E($\sqrt{3}$,3,0),
$\overrightarrow{AD}$=(0,2,3),$\overrightarrow{D{B}_{1}}$=(2$\sqrt{3}$,0,0),$\overrightarrow{DC}$=(0,2,-3),$\overrightarrow{AE}$=($\sqrt{3},3,0$),
設(shè)平面B1DC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{B}_{1}}=2\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{DC}=2y-3z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,3,2),
設(shè)AD與面B1DC所成角為θ,
則sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{AD}|}{|\overrightarrow{n}|•|\overrightarrow{AD}|}$=$\frac{12}{\sqrt{13}•\sqrt{13}}$=$\frac{12}{13}$.
∴AD與面B1DC所成角的正弦值為$\frac{12}{13}$;
過D作DF∥AE,交B1C1于F,則梯形AEFD就是過A,D,E三點(diǎn)的截面,
∴AE=$\sqrt{16-4}=2\sqrt{3}$,DF=$\frac{1}{2}AE=\sqrt{3}$,
DF到AE的距離d=|$\overrightarrow{AD}$|•$\sqrt{1-(\frac{\overrightarrow{AD}•\overrightarrow{AE}}{|\overrightarrow{AD}|•|\overrightarrow{AE}|})^{2}}$=$\sqrt{13}$•$\sqrt{\frac{10}{13}}$=$\sqrt{10}$,
∴過A,D,E三點(diǎn)的截面面積是S梯形AEFD=$\frac{1}{2}$($\sqrt{3}+2\sqrt{3}$)×$\sqrt{10}$=$\frac{3}{2}\sqrt{30}$.
故答案為:$\frac{12}{13},\;\frac{3}{2}\sqrt{30}$.

點(diǎn)評 本題考查線面角的正弦值的求法,考查過三點(diǎn)的截面面積的求法,是中檔題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列語句:
①若a,b∈R+,a≠b,則a3+b3>a2b+ab2
②若a,b,m∈R+,a<b,則$\frac{a+m}{b+m}$<$\frac{a}{b}$;
③命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1.
④當(dāng)x∈(0,$\frac{π}{2}$)時,sin x+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$,
其中結(jié)論正確的序號為①③(填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=($\sqrt{x}$)2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線f(x)=2x2+1在點(diǎn)M(x0,y0)處的瞬時變化率為-4,則點(diǎn)M的坐標(biāo)為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若某程序框圖如圖所示,則該程序運(yùn)行后輸出的B等于(  )
A.2B.5C.14D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為(  )
參考數(shù)據(jù):$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦點(diǎn)分別為F1,F(xiàn)2,若在雙曲線C的下支上存在一點(diǎn)P使得|PF1|=4|PF2|,則雙曲線C的離心率的取值范圍為(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在拋物線y=4x2上有一點(diǎn)P,使這點(diǎn)到直線y=4x-5的距離最短,求該點(diǎn)P坐標(biāo)和最短距離.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 中文字幕在线观看第一页 | 中文字幕网在线 | 欧美a√| 亚洲一区二区视频在线观看 | 国产在线久 | 日产久久| 成人在线www| 亚洲精品电影网在线观看 | 中文字幕国产精品 | 欧洲av片| 亚洲精品电影 | 性视频黄色 | 国产一区二区三区精品久久久 | 亚洲精品视频免费在线 | 日韩成人在线看 | 在线播放国产一区二区三区 | 91精品国产人妻国产毛片在线 | 亚洲精品乱码久久久久久蜜桃不卡 | 污网站免费在线 | 日韩在线欧美 | 青青青国产 | 日本视频网址 | 毛片免费看 | 国产日韩视频在线观看 | 成人免费网站视频 | 日本一区二区久久 | 福利精品在线观看 | 精品久久久久一区二区国产 | 久久99精品久久久水蜜桃 | 欧美一区二区三区四区视频 | 欧美一区二区三区成人 | 国产精品第2页 | 99福利视频 | 日韩高清中文字幕 | 亚洲综合视频一区 | 亚洲精品久久久久久久久久 | 一本一道久久久a久久久精品91 | 精品一区二区三区久久久 | 亚洲成人福利 | 成人免费视频在线观看 | 成人激情在线 |