分析 (Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的最大值和最小值即可;
(Ⅱ)欲求出切線方程,只須求出其斜率即可,故先設切點坐標為(t,t3-3t),利用導數求出在x=t處的導函數值,再結合導數的幾何意義即可求出切線的斜率.從而問題解決.
解答 解:(Ⅰ)f(x)=x3-3x,
f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
故f(x)在[-2,-1)遞增,在(-1,1]遞減,
而f(-2)=-2,f(-1)=2,f(1)=-2,
∴f(x)的最小值是-2,
f(x)的最大值是2;
(Ⅱ)∵f′(x)=3x2-3,
設切點坐標為(t,t3-3t),
則切線方程為y-(t3-3t)=3(t2-1)(x-t),
∵切線過點P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化簡得t3-3t2=0,∴t=0或t=3.
∴切線的方程:3x+y=0或24x-y-54=0.
點評 本小題主要考查直線的斜率、導數的幾何意義、利用導數研究曲線上某點切線方程等基礎知識,考查運算求解能力.
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{π}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4+2i | B. | 4+3i | C. | 4-2i | D. | 4-3i |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3+4i | B. | 2+2$\sqrt{3}$i | C. | 3-4 | D. | -3-4i |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com