【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求證:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由直線與平面平行的性質可得:由AD//平面BCC1B1,有AD//BC,同時AD平面ADD1A1,可得BC//平面ADD1A1;
(2)由(1)知AD//BC,因為AD⊥DB,所以BC⊥DB,同時由直四棱柱性質可得DD1⊥BC,BC⊥平面BDD1B1,可得證明.
解:(1)因為AD//平面BCC1B1,AD平面ABCD,平面BCC1B1∩平面ABCD=BC,
所以AD//BC.
又因為BC平面ADD1A1,AD平面ADD1A1,
所以BC//平面ADD1A1.
(2)由(1)知AD//BC,因為AD⊥DB,所以BC⊥DB,
在直四棱柱ABCD-A1B1C1D1中DD1⊥平面ABCD,BC底面ABCD,
所以DD1⊥BC,
又因為DD1平面BDD1B1,DB平面BDD1B1,DD1∩DB=D,
所以BC⊥平面BDD1B1,
因為BC平面BCC1B1,
所以平面BCC1B1⊥平面BDD1B1
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,
,
,且
.點
是線段
上一點,且
.
(1)求證:平面平面
.
(2)若,在線段
上是否存在一點
,使得
到平面
的距離為
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O1與圓O:x2+y2=r(r>0)交于點P(﹣1,y0).且關于直線x+y=1對稱.
(1)求圓O及圓O1的方程:
(2)在第一象限內.圓O上是否存在點A,過點A作直線l與拋物線y2=4x交于點B,與x軸交于點D,且以點D為圓心的圓過點O,A,B?若存在.求出點A的坐標;若不存在.說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
某投資公司在2010年年初準備將1000萬元投資到“低碳”項目上,現有兩個項目供選擇:
項目一:新能源汽車.據市場調研,投資到該項目上,到年底可能獲利,也可能虧損
,且這兩種情況發生的概率分別為
和
;
項目二:通信設備.據市場調研,投資到該項目上,到年底可能獲利,可能虧損
,也可能不賠不賺,且這三種情況發生的概率分別為
、
和
(Ⅰ)針對以上兩個投資項目,請你為投資公司選擇一個合理的項目,并說明理由;
(Ⅱ)若市場預期不變,該投資公司按照你選擇的項目長期投資(每一年的利潤和本金繼續用作投資),問大約在哪一年的年底總資產(利潤+本金)可以翻一番?
(參考數據:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
傾斜角的余弦值為
,圓
與以線段
為直徑的圓關于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com