【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn):用水量不超過(guò)的部分按照平價(jià)收費(fèi),超過(guò)
的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過(guò)抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組
制作了頻率分布直方圖,
(1)從頻率分布直方圖中估計(jì)該40位居民月均用水量的眾數(shù),中位數(shù);
(2)在該樣本中月均用水量少于1噸的居民中隨機(jī)抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?
【答案】(1)眾數(shù)2.25,中位數(shù)2;(2).
【解析】
(1)根據(jù)頻率分布直方圖中的數(shù)據(jù)直接求解即可
(2)由直方圖可知:月均用水量在的人數(shù)為2人,記為
,月均用水量在
的人數(shù)為4人,記為
,然后用列舉法求解即可.
(1)由圖可得,該40位居民月均用水量的眾數(shù)為2.25,
因?yàn)榍八膫(gè)矩形的面積依次為,和為
所以中位數(shù)為2;
(2)由直方圖可知:月均用水量在的人數(shù)為:
人,記為
,
月均用水量在的人數(shù)為:
人,記為
,
從此6人中隨機(jī)抽取兩人所有可能的情況有:
, 共15種,
其中月均用水量都在的情況有:
,共6種,
所以?xún)扇嗽戮盟慷疾坏陀?/span>0.5噸的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在新冠肺炎疫情的影響下,重慶市教委響應(yīng)“停課不停教,停課不停學(xué)”的號(hào)召進(jìn)行線(xiàn)上教學(xué),某校高三年級(jí)的甲、乙兩個(gè)班中,根據(jù)某次數(shù)學(xué)測(cè)試成績(jī)各選出5名學(xué)生參加數(shù)學(xué)建模競(jìng)賽,已知這次測(cè)試他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.
(1)求出,
的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績(jī)的方差
、
,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽,并說(shuō)明你的理由.
(2)從成績(jī)?cè)?/span>85分及以上的學(xué)生中隨機(jī)抽取2名,用表示來(lái)自甲班的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線(xiàn)
經(jīng)過(guò)點(diǎn)
,傾斜角為
,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫(xiě)出直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)
的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)與曲線(xiàn)
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為4.且過(guò)點(diǎn)
.
(1)求橢圓E的方程;
(2)設(shè),
,
,過(guò)B點(diǎn)且斜率為
的直線(xiàn)l交橢圓E于另一點(diǎn)M,交x軸于點(diǎn)Q,直線(xiàn)AM與直線(xiàn)
相交于點(diǎn)P.證明:
(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)為生產(chǎn)一種精密管件研發(fā)了一臺(tái)生產(chǎn)該精密管件的車(chē)床,該精密管件有內(nèi)外兩個(gè)口徑,監(jiān)管部門(mén)規(guī)定“口徑誤差”的計(jì)算方式為:管件內(nèi)外兩個(gè)口徑實(shí)際長(zhǎng)分別為,標(biāo)準(zhǔn)長(zhǎng)分別為
則“口徑誤差”為
只要“口徑誤差”不超過(guò)
就認(rèn)為合格,已知這臺(tái)車(chē)床分晝夜兩個(gè)獨(dú)立批次生產(chǎn).工廠(chǎng)質(zhì)檢部在兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取40件作為樣本,經(jīng)檢測(cè)其中晝批次的40個(gè)樣本中有4個(gè)不合格品,夜批次的40個(gè)樣本中有10個(gè)不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個(gè)批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤(rùn)為10元;若對(duì)產(chǎn)品檢驗(yàn),則每件產(chǎn)品的檢驗(yàn)費(fèi)用為2.5元;若有不合格品進(jìn)入用戶(hù)手中,則工廠(chǎng)要對(duì)用戶(hù)賠償,這時(shí)生產(chǎn)的每件不合格品工廠(chǎng)要損失25元.以上述樣本的頻率作為概率,以總利潤(rùn)的期望值為決策依據(jù),分析是否要對(duì)每個(gè)批次的所有產(chǎn)品作檢測(cè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,
,
,
,點(diǎn)
為
中點(diǎn).
(1)求證:平面平面
;
(2)若點(diǎn)為
中點(diǎn),求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓以?huà)佄锞(xiàn)
的焦點(diǎn)為頂點(diǎn),且離心率為
.
(1)求橢圓的方程;
(2)若直線(xiàn)與橢圓
相交于
、
兩點(diǎn),與直線(xiàn)
相交于
點(diǎn),
是橢圓
上一點(diǎn)且滿(mǎn)足
(其中
為坐標(biāo)原點(diǎn)),試問(wèn)在
軸上是否存在一點(diǎn)
,使得
為定值?若存在,求出點(diǎn)
的坐標(biāo)及
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高生產(chǎn)線(xiàn)的運(yùn)行效率,工廠(chǎng)對(duì)生產(chǎn)線(xiàn)的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線(xiàn)的技術(shù)改造前后各次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:
(1)①設(shè)所采集的個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù)
,并將連續(xù)正常運(yùn)行時(shí)間超過(guò)
和不超過(guò)
的次數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | |
改造前 | ||
改造后 |
②根據(jù)①中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線(xiàn)技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:.
(2)工廠(chǎng)的生產(chǎn)線(xiàn)的運(yùn)行需要進(jìn)行維護(hù),工廠(chǎng)對(duì)生產(chǎn)線(xiàn)的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種.對(duì)生產(chǎn)線(xiàn)設(shè)定維護(hù)周期為天(即從開(kāi)工運(yùn)行到第
天
進(jìn)行維護(hù).生產(chǎn)線(xiàn)在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線(xiàn)能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線(xiàn)不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為
萬(wàn)元/次;保障維護(hù)費(fèi)第一次為
萬(wàn)元/周期,此后每增加一次則保障維護(hù)費(fèi)增加
萬(wàn)元.現(xiàn)制定生產(chǎn)線(xiàn)一個(gè)生產(chǎn)周期(以
天計(jì))內(nèi)的維護(hù)方案:
,
、
、
、
.以生產(chǎn)線(xiàn)在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)在函數(shù)的圖象上取
兩個(gè)不同的點(diǎn),令直線(xiàn)
的斜率為
,則在函數(shù)的圖象上是否存在點(diǎn)
,且
,使得
?若存在,求
兩點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com