日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=lnx,
(1)當a=-2時,函數h(x)=f(x)-g(x)在其定義域內是增函數,求實數b的取值范圍;
(2)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的圖象與x軸交于A(x1,0)、B(x2,0)兩點(0<x1<x2),且線段AB的中點為C(x,0),函數V(x)的導函數為V′(x),求證:V′(x)≠0.
【答案】分析:(1)求導函數,可得對任意x∈(0,+∞)恒成立,分離參數,求出函數的最值,即可求實數b的取值范圍;
(2)利用反證法,求導函數,利用V(x)的圖象與x軸交于A(x1,0)、B(x2,0)兩點(0<x1<x2),且線段AB的中點為C(x,0),從而可引出矛盾.
解答:(1)解:由題意,h(x)=lnx+x2-bx,
∵函數h(x)=f(x)-g(x)在其定義域內是增函數,
對任意x∈(0,+∞)恒成立
分離參數可得
所以…(4分)
(2)證明:V(x)=2f(x)-x2-kx(k∈R),所以
令V′(x)=0,則由題意可得①;
x1+x2=2x③;=0④
由①②得
由④得
所以,即⑤(8分)
,則,所以
因此u(t)在(0,1)上是增函數,
所以u(t)<u(1)=0,即與⑤矛盾 
因此假設不成立  
故V'(x)≠0(12分)
點評:本題考查導數知識的運用,考查函數的單調性,考查反證法的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 最近免费中文字幕在线视频2 | 成人日韩在线观看 | 一级片的网址 | jizzjizz亚洲中国少妇 | 视频一区二区三 | 欧美日本国产欧美日本韩国99 | 九九综合| 国产欧美日韩综合精品一区二区 | 久久久久久久久久久久福利 | 看免费的毛片 | 欧美一级网 | 最新黄色网址在线播放 | 亚洲国产在 | 亚洲九九 | 国产视频导航 | 伊人网网站| 一区二区日韩 | 久久久国产精品入口麻豆 | 久久天堂热 | 亚洲人人爽 | 久久久久女人精品毛片九一韩国 | 激情久久av一区av二区av三区 | 国产精品久久久久一区二区三区 | 免费黄色福利网站 | 一区二区精品在线 | 日本特黄特色aaa大片免费 | 亚洲欧洲一区二区 | av激情在线 | 精品亚洲一区二区 | 一区视频在线 | 69黄在线看片免费视频 | 成人免费一区二区三区 | 日本高清视频一区二区三区 | 久久99这里只有精品 | 丁香婷婷综合激情五月色 | 成人性视频在线 | 国产一区二区自拍 | 国产欧美精品在线 | 日韩久久一区 | 国产欧美日 | 国产精品观看 |