【題目】近年來鄭州空氣污染較為嚴重,現隨機抽取一年(365天)內100天的空氣中指數的監測數據,統計結果如下:
空氣質量 | 優 | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
天數 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
記某企業每天由空氣污染造成的經濟損失為 (單位:元),
指數為
.當
在區間
內時對企業沒有造成經濟損失;當
在區間
內時對企業造成經濟損失成直線模型(當
指數為150時造成的經濟損失為500元,當
指數為200 時,造成的經濟損失為700元);當
指數大于300時造成的經濟損失為2000元.
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 | 100 |
(1)試寫出的表達式;
(2)試估計在本年內隨機抽取一天,該天經濟損失大于500元且不超過900元的概率;
(3)若本次抽取的樣本數據有30天是在供暖季,其中有8天為重度污染,完成下面列聯表,并判斷是否有的把握認為鄭州市本年度空氣重度污染與供暖有關?
【答案】(1);(2)
;(3)有
的把握認為空氣重度污染與供暖有關.
【解析】試題分析:(1)根據在區間[0,100]對企業沒有造成經濟損失;在區間(100,300]對企業造成經濟損失成直線模型(當PM2.5指數為150時造成的經濟損失為500元,當PM2.5指數為200時,造成的經濟損失為700元);當PM2.5指數大于300時造成的經濟損失為2000元,可得函數關系式;
(2)由500<S≤900,得150<ω≤250,頻數為39,即可求出概率;
(3)根據所給的數據,列出列聯表,根據所給的觀測值的公式,代入數據做出觀測值,同臨界值進行比較,即可得出結論.
試題解析:
(1)根據在區間對企業沒有造成經濟損失;在區間
對企業造成經濟損失成直線模型(當
指數為150時造成的經濟損失為500元,當
指數為200時,造成的經濟損失為700元);當
指數大于300時造成的經濟損失為2000元,可得:
(2)設“在本年內隨機抽取一天,該天經濟損失大于200元且不超過600元”為事件
,由
,得
,頻數為39,
,
(3)根據以上數據得到如下列聯表:
非重度污染 | 重度污染 | 合計 | |
供暖季 | 22 | 8 | 30 |
非供暖季 | 63 | 7 | 70 |
合計 | 85 | 15 | 100 |
的觀測值
,
所以有的把握認為空氣重度污染與供暖有關.
科目:高中數學 來源: 題型:
【題目】如圖,已知曲線,曲線
的左右焦點是
,
,且
就是
的焦點,點
是
與
的在第一象限內的公共點且
,過
的直線
分別與曲線
、
交于點
和
.
(Ⅰ)求點的坐標及
的方程;
(Ⅱ)若與
面積分別是
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點
為極點,
軸正半軸為極軸,取相同的單位長度建立極坐標系,已知曲線
,直線
.
(1)將曲線上所有點的橫坐標、縱坐標分別伸長為原來的2倍、
倍后得到曲線
,請寫出直線
,和曲線
的直角坐標方程;
(2)若直線經過點
且
,
與曲線
交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中有大小相同的3個紅球和2個白球,現從袋中每次取出一個球,若取出的是紅球,則放回袋中,繼續取一個球,若取出的是白球,則不放回,再從袋中取一球,直到取出兩個白球或者取球5次,則停止取球,設取球次數為,
(1)求取球3次則停止取球的概率;
(2)求隨機變量的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網絡外賣在市的普及情況,
市某調查機構借助網絡進行了關于網絡外賣的問卷調查,并從參與調查的網民中抽取了200人進行抽樣分析,得到表格(單位:人).
(1)根據表中數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用網絡外賣的情況與性別有關?
(2)①現從所抽取的女網民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出了3人贈送外賣優惠券,求選出的3人中至少有2人經常使用網絡外賣的概率;
②將頻率視為概率,從市所有參與調查的網民中隨機抽取10人贈送禮品,記其中經常使用網絡外賣的人數為
,求
的數學期望和方差.
參考公式: ,其中
.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
(
)與直線
:
相切,設點
為圓上一動點,
軸于
,且動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)直線與直線
垂直且與曲線
交于
,
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們休閑方式的一次調查中,共調查120人,其中女性70人,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)根據以上數據建立一個2×的列聯表:
休閑方式 性別 | 看電視 | 運 動 | 總 計 |
女 性 | |||
男 性 | |||
總 計 |
(2)有多大的把握認為休閑方式與性別有關?
參考公式及數據:K2=
①當K2>2.706時,有90%的把握認為A、B有關聯;
②當K2>3.841時,有95%的把握認為A、B有關聯;
③當K2>6.635時,有99%的把握認為A、B有關聯.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用C(A)表示非空集合A中的元素個數,定義A*B=若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,設實數a的所有可能取值組成的集合是S,則C(S)等于( )
A. 1 B. 3
C. 5 D. 7
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com