【題目】在四棱錐中,四邊形
是矩形,平面
平面
,點
分別為
、
中點.
(1)求證: 平面
;
(2)若,求三棱錐
的體積.
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
),以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現有10件產品,其中7件是一等品,3件是二等品.
(1)隨機選取1件產品,求能夠通過檢測的概率;
(2)隨機選取3件產品,
(i)記一等品的件數為,求
的分布列;
(ii)求這三件產品都不能通過檢測的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數列{an+1}為等比數列,并求數列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數列{bn}的前n項和為Tn.求滿足不等式>2010的n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產不同規格的一種產品,根據檢測標準,其合格產品的質量與尺寸
之間近似滿足關系式
為大于0的常數).按照某項指標測定,當產品質量與尺寸的比在區間
內時為優等品.現隨機抽取6件合格產品,測得數據如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現從抽取的6件合格產品中再任選3件,求恰好取到2件優等品的概率;
(Ⅱ)根據測得數據作了初步處理,得相關統計量的值如下表:
|
| ||
75.3 | 24.6 | 18.3 | 101.4 |
(i)根據所給統計量,求關于
的回歸方程;
(ii)已知優等品的收益(單位:千元)與
的關系
,則當優等品的尺寸為
為何值時,收益
的預報值最大?(精確到0.1)
附:對于樣本,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com