已知:函數f(x)=x3-3ax+b(a≠0).
(1)若曲線y=f(x)在點(2,f(x))處與直線y=8相切,求a,b的值;
(2)若a=9,b=1,求函數f(x)的單調區間與極值點.
分析:(1)先求導函數,根據曲線y=f(x)在點(2,f(x))處與直線y=8相切,則f'(2)=0,f(2)=0建立方程組,解之即可求出a和b的值;
(2)先求出f'(x)=0的值,然后判定導數符號確定函數的單調區間,根據極值的定義判定極值點,代入函數解析式求出極值即可.
解答:解:(1)f'(x)=3x
2-3a,
∵曲線y=f(x)在點(2,f(x))處與直線y=8相切,
∴
?
?
(2)∵f(x)=x
3-27x+1,∴f'(x)=3x
2-27,令f'(x)=0,則x=±3,即:
x |
(-∞,-3) |
-3 |
(-3,3) |
3 |
(3,+∞) |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
增 |
極大 |
減 |
極小 |
增 |
則函數f(x)=x
3-27x+1的單調增區間是:(-∞,-3),(3,+∞)
單調減區間是:(-3,3)
x=-3是極大值點,極大值為f(-3)=55;
x=3是極小值點,極小值為f(3)=-53.
點評:本題主要考查了導數的幾何意義,以及利用導數研究函數單調性和極值,同時考查了計算能力,屬于中檔題.