如圖4,四邊形為正方形,
平面
,
,
于點
,
,交
于點
.
(1)證明:平面
;
(2)求二面角的余弦值.
科目:高中數學 來源: 題型:解答題
如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=
.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PA與平面PBC所成角的正弦值;
(3)在線段PC上是否存在一點Q(除去端點),使得平面QAD與平面PBC所成銳二面角的大小為?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知在空間四邊形ABCD中,E,F分別是AB,AD的中點,G,H分別是BC,CD上的點,且=
=2.求證:直線EG,FH,AC相交于一點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點,動點F在側棱CC1上,且不與點C重合.
(1)當CF=1時,求證:EF⊥A1C;
(2)設二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com