【題目】已知平面與平面
、平面
都相交,則這三個平面可能的交線有________條.
科目:高中數學 來源: 題型:
【題目】某小區(qū)為了調查居民的生活水平,隨機從小區(qū)住戶中抽取個家庭,得到數據如下:
家庭編號 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
參考公式:回歸直線的方程是:,其中,
.
(1)據題中數據,求月支出(千元)關于月收入
(千元)的線性回歸方程(保留一位小數);
(2)從這個家庭中隨機抽取
個,求月支出都少于
萬元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
是邊長為2的菱形,
,四邊形
是矩形,
和
分別是
和
的中點.
(1)求證:平面平面
;
(2)若平面平面
,
,求平面
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,直線
與
相切,求
的值;
(2)若函數在
內有且只有一個零點,求此時函數
的單調區(qū)間;
(3)當時,若函數
在
上的最大值和最小值的和為1,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取
名學生進行調查.
(1)已知抽取的名學生中含男生110人,求
的值及抽取到的女生人數;
(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學生進行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據調查結果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有99.5%的把握認為選擇科目與性別有關?
說明你的理由;
(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下命題正確的個數是
①函數在
處導數存在,若
;
是
的極值點,則
是
的必要不充分條件
②實數為實數
,
的等比中項,則
③兩個非零向量與
,若
,則
與
的夾角為鈍角
④平面內到一個定點和一條定直線
距離相等的點的軌跡叫拋物線
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒市委、市政府在上饒召開上饒市全面展開新能源工程動員大會,會議動員各方力量,迅速全面展開新能源工程工作.某企業(yè)響應號召,對現有設備進行改造,為了分析設備改造前后的效果,現從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
(1)完成列聯(lián)表,并判斷是否有
的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數據,試從產品合格率的角度對改造前后設備的優(yōu)劣進行比較;
(3)根據市場調查,設備改造后,每生產一件合格品企業(yè)可獲利200元,一件不合格品虧損150元,用頻率估計概率,則生產1000件產品企業(yè)大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 (n∈N*)的展開式中第五項的系數的與第三項的系數的比是10∶1.
(1)求展開式中各項系數的和;
(2)求展開式中含的項;
(3)求展開式中系數最大的項和二項式系數最大的項.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com