日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2012•肇慶一模)設函數f(x)=x2+aln(x+1).
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若函數F(x)=f(x)+ln
2
有兩個極值點x1,x2且x1<x2,求證F(x2)>
1
4
分析:(Ⅰ)由函數f(x)的定義域為(-1,+∞),f(x)=2x+
a
x+1
=
2x2+2x+a
x+1
,令g(x)=2x2+2x+a,則△=4-8a.由根的判斷式進行分類討論,能求出函數f(x)的單調區間.
(Ⅱ)由F′(x)=f′(x),知函數F(x)有兩個極值點時,0<a<
1
2
,0<
1-2a
<1,由此推導出x2=
-1+
1-2a
2
∈(-
1
2
,0),且g(x2)=0,即a=-(2x22+2x2),F(x2)=x22-(2x22+2x2)ln(1+x2)+ln
2
,構造函數h(x)=x2-(2x2+2x)ln(1+x)+ln
2
,能夠證明F(x2)>
1
4
解答:解:(Ⅰ)函數f(x)的定義域為(-1,+∞),(1分)
f(x)=2x+
a
x+1
=
2x2+2x+a
x+1
,(x>-1),(2分)
令g(x)=2x2+2x+a,則△=4-8a.
①當△<0,即a
1
2
時,g(x)>0,從而f′(x)>0,
故函數f(x)在(-1,+∞)上單調遞增;(3分)
②當△=0,即a=
1
2
時,g(x)≥0,此時f′(x)≥0,此時f′(x)在f′(x)=0的左右兩側不變號,
故函數f(x)在(-1,0)上單調遞增; (4分)
③當△>0,即a<
1
2
時,g(x)=0的兩個根為x1=
-1-
1-2a
2
x2=
-1+
1-2a
2
>-
1
2

1-2a
≥1
,即a≤0時,x1≤-1,當0<a<
1
2
時,x1>-1.
故當a≤0時,函數f(x)在(-1,
-1+
1-2a
2
)單調遞減,在(
-1+
1-2a
2
,+∞)單調遞增;
當0<a<
1
2
時,函數f(x)在(-1,
-1-
1-2a
2
),(
-1+
1-2a
2
,+∞)單調遞增,
在(
-1-
1-2a
2
-1+
1-2a
2
)單調遞減.(7分)
(Ⅱ)∵F(x)=f(x)+ln
2
,∴F′(x)=f′(x),
∴當函數F(x)有兩個極值點時0<a<
1
2
,0<
1-2a
<1,
故此時x2=
-1+
1-2a
2
∈(-
1
2
,0),且g(x2)=0,即a=-(2x22+2x2),(9分)
∴F(x2)=x22+aln(1+x2)+ln
2

=x22-(2x22+2x2)ln(1+x2)+ln
2

設h(x)=x2-(2x2+2x)ln(1+x)+ln
2
,其中-
1
2
<x<0
,(10分)
則h′(x)=2x-2(2x+1)ln(1+x)-2x=-2(2x+1)ln(1+x),
由于-
1
2
<x<0
時,h′(x)>0,
故函數h(x)在(-
1
2
,0)上單調遞增,
故h(x).h(-
1
2
)=
1
4

∴F(x2)=h(x2)>
1
4
.(14分)
點評:本題考查函數的單調區間的求法,考查不等式的證明,綜合性強,難度大,對數學思維能力要求較高.解題時要認真審題,注意導數性質、分類討論思想、等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•肇慶一模)已知四棱錐P-ABCD如圖1所示,其三視圖如圖2所示,其中正視圖和側視圖都是直角三角形,俯視圖是矩形.
(1)求此四棱錐的體積;
(2)若E是PD的中點,求證:AE⊥平面PCD;
(3)在(2)的條件下,若F是PC的中點,證明:直線AE和直線BF既不平行也不異面.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•肇慶一模)已知數列{an}是一個等差數列,且a2=1,a5=-5,
(1)求{an}的通項公式an和前n項和Sn
(2)設Cn=
5-an2
bn=2Cn
,證明數列{bn}是等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•肇慶一模)已知數列{an}是一個等差數列,且a2=1,a5=-5.
(Ⅰ)求{an}的通項an
(Ⅱ)設cn=
5-an2
bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•肇慶一模)已知集合M={0,1,2},集合N滿足N⊆M,則集合N的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•肇慶一模)已知函數f(x)=lgx的定義域為M,函數y=
2x,x>2
-3x+1,x<1
的定義域為N,則M∩N=(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产高清久久久 | 91在线精品一区二区 | 99精品九九 | 精品视频一区二区三区 | 亚洲欧美另类久久久精品2019 | 亚洲国产aⅴ成人精品无吗 91精品国产一区二区 | 中文字幕av高清 | 中文字幕加勒比 | 欧美日韩久久久 | 黄色片视频网站 | 日韩欧美大片在线观看 | 成人精品一区 | 先锋影音在线观看 | 日韩视频网 | 欧美精品一区在线发布 | 久久久久久91香蕉国产 | 欧美日本一区视频免费 | 欧美精品一区三区 | 精品久久久久久久久久 | 亚洲国产成人91精品 | 欧美精品一区视频 | 成av在线 | 国产精品毛片久久久久久 | 精品亚洲一区二区三区 | 欧美一区二区三区视频在线观看 | 亚洲电影一区二区 | 亚洲精品v | 午夜精品久久久久久久白皮肤 | 人人澡人人草 | 欧美在线三级 | 久久久成人网 | a一级片在线观看 | 91久久精品国产91久久 | 日韩视频在线观看不卡 | 综合久久综合久久 | 在线一区视频 | 人人鲁人人莫一区二区三区 | 国产高清精品一区二区三区 | 成人精品一区二区三区中文字幕 | 亚洲精品一二三区 | 国产一区二区三区在线 |