【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),
為
上一點(diǎn),以
為邊作等邊三角形
,且
、
、
三點(diǎn)按逆時(shí)針方向排列.
(Ⅰ)當(dāng)點(diǎn)在
上運(yùn)動(dòng)時(shí),求點(diǎn)
運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線:
,經(jīng)過伸縮變換
得到曲線
,試判斷點(diǎn)
的軌跡與曲線
是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒有則說(shuō)明理由.
【答案】(1)(2)
.
【解析】試題分析:考慮到 則
點(diǎn)的極坐標(biāo)可以表示為
將
點(diǎn)代入直線
的極坐標(biāo)方程中得到關(guān)于
的方程即為
點(diǎn)的極坐標(biāo)方程,再轉(zhuǎn)化為
點(diǎn)的直角坐標(biāo)方程.(2)將曲線
的普通方程與直線
普通方程聯(lián)立
故必有兩個(gè)交點(diǎn).
試題解析:(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為
,
則由題意可得點(diǎn)的坐標(biāo)為
,
再由點(diǎn)的橫坐標(biāo)等于
,
,
可得,
可得,
故當(dāng)點(diǎn)在
上運(yùn)動(dòng)時(shí)點(diǎn)
的直角坐標(biāo)方程為
.
(Ⅱ)曲線:
,
,即
,代入
,即
,
聯(lián)立點(diǎn)的軌跡方程,消去
得
,
有交點(diǎn),坐標(biāo)分別為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓
的左、右焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,線段
與
軸的交點(diǎn)
滿足
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點(diǎn)
、
,當(dāng)
,且滿足
時(shí),求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)平面中, 的兩個(gè)頂點(diǎn)為
,平面內(nèi)兩點(diǎn)
、
同時(shí)滿足:①
;②
;③
.
(1)求頂點(diǎn)的軌跡
的方程;
(2)過點(diǎn)作兩條互相垂直的直線
,直線
與點(diǎn)
的軌跡
相交弦分別為
,設(shè)弦
的中點(diǎn)分別為
.
①求四邊形的面積
的最小值;
②試問:直線是否恒過一個(gè)定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn),若不過定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣2x+4my+4m2=0,圓C1:x2+y2=25,以及直線l:3x﹣4y﹣15=0.
(1)求圓C1:x2+y2=25被直線l截得的弦長(zhǎng);
(2)當(dāng)m為何值時(shí),圓C與圓C1的公共弦平行于直線l;
(3)是否存在m,使得圓C被直線l所截的弦AB中點(diǎn)到點(diǎn)P(2,0)距離等于弦AB長(zhǎng)度的一半?若存在,求圓C的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中
為自然對(duì)數(shù)的底數(shù),其圖象與
軸交于
,
兩點(diǎn),且
.
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)證明: (
為函數(shù)
的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(
),
為
上一點(diǎn),以
為邊作等邊三角形
,且
、
、
三點(diǎn)按逆時(shí)針方向排列.
(Ⅰ)當(dāng)點(diǎn)在
上運(yùn)動(dòng)時(shí),求點(diǎn)
運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線:
,經(jīng)過伸縮變換
得到曲線
,試判斷點(diǎn)
的軌跡與曲線
是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒有則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的方程為
,點(diǎn)
是拋物線
上到直線
距離最小的點(diǎn),點(diǎn)
是拋物線上異于點(diǎn)
的點(diǎn),直線
與直線
交于點(diǎn)
,過點(diǎn)
與
軸平行的直線與拋物線
交于點(diǎn)
.
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)證明直線恒過定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點(diǎn),若EF= , 則AD與BC所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)(1,3),并且g(x)=xf(x)是偶函數(shù).
(1)求實(shí)數(shù)a、b的值;
(2)用定義證明:函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com