【題目】某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
【答案】(1)(2)
,
【解析】試題分析:(1)根據已知條件,將周長米為等量關系可以建立
滿足的關系式,再由此關系式進一步得到函數解析式:
,即可解得
;(2)根據題意及(1)可得花壇的面積為
,裝飾總費用為
,因此可得函數解析式
,而要求
的最大值,即求函數
的最大值,可以考慮采用換元法令
,從而
,再利用基本不等式,即可求得
的最大值:
,當且僅當
,
時取等號,此時
,
,因此當
時,花壇的面積與裝飾總費用的比最大.
試題解析:(1)扇環的圓心角為,則
,∴
, 3分
(2)由(1)可得花壇的面積為, 6分
裝飾總費用為, 8分
∴花壇的面積與裝飾總費用的, 10分
令,則
,當且僅當
,
時取等號,此時
,
, 12分
答:當時,花壇的面積與裝飾總費用的比最大. 13分
科目:高中數學 來源: 題型:
【題目】已知為橢圓
的右焦點,
為
上的任意一點.
(1)求的取值范圍;
(2)是
上異于
的兩點,若直線
與直線
的斜率之積為
,證明:
兩點的橫坐標之和為常數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左右焦點分別為
,
,左頂點為
,點
在橢圓
上,且
的面積為
.
(1)求橢圓的方程;
(2)過原點且與
軸不重合的直線交橢圓
于
,
兩點,直線
分別與
軸交于點
,
,.求證:以
為直徑的圓恒過交點
,
,并求出
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線的焦點為
,拋物線上一定點
.
(1)求拋物線的方程及準線
的方程;
(2)過焦點的直線(不經過
點)與拋物線交于
兩點,與準線
交于點
,記
的斜率分別為
,問是否存在常數
,使得
成立?若存在
,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有六支足球隊參加單循環比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中
,各踢了
場,
各踢了
場,
踢了
場,且
隊與
隊未踢過,
隊與
隊也未踢過,則在第一周的比賽中,
隊踢的比賽的場數是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.某公司隨即抽取人對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的
人中的性別以及意見進行了分類,得到的數據如下表所示:
男 | 女 | 總計 | |
認為共享產品對生活有益 | |||
認為共享產品對生活無益 | |||
總計 |
(1)根據表中的數據,能否在犯錯誤的概率不超過的前提下,認為對共享產品的態度與性別有關系?
(2)現按照分層抽樣從認為共享產品增多對生活無益的人員中隨機抽取人,再從
人中隨機抽取
人贈送超市購物券作為答謝,求恰有
人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某營養學家建議:高中生每天的蛋白質攝入量控制在(單位:克),脂肪的攝入量控制在
(單位:克),某學校食堂提供的伙食以食物
和食物
為主,1千克食物
含蛋白質60克,含脂肪9克,售價20元;1千克食物
含蛋白質30克,含脂肪27克,售價15元.
(1)如果某學生只吃食物,判斷他的伙食是否符合營養學家的建議,并說明理由;
(2)為了花費最低且符合營養學家的建議,學生需要每天同時食用食物和食物
各多少千克?并求出最低需要花費的錢數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
、
為已知實常數,
.
下列所有正確命題的序號是____________.
①若,則
對任意實數
恒成立;
②若,則函數
為奇函數;
③若,則函數
為偶函數;
④當時,若
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩個定點,
, 動點
滿足
,設動點
的軌跡為曲線
,直線
:
.
(1)求曲線的軌跡方程;
(2)若是直線
上的動點,過
作曲線
的兩條切線QM、QN,切點為
、
,探究:直線
是否過定點,若存在定點請寫出坐標,若不存在則說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com