日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
函數f(x)=
x+1
,則f(3)=(  )
分析:把3帶入函數解析式即可求得.
解答:解:∵f(x)=
x+1

∴f(3)=
3+1
=2.
故選B.
點評:本題考查函數值的計算,考查學生計算能力,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99深爱久久99精品 | 一区二区久久久 | 国产成人福利视频 | 久久99精品国产99久久6男男 | 国产h视频在线观看 | 天天干天天操天天爽 | 国产成人免费视频 | 国产一区二区三区四区在线观看 | 亚洲福利在线观看 | 久久久久久免费 | 欧美日韩亚洲国产 | 国产精品视频自拍 | 午夜激情影院在线观看 | 欧美日韩国产不卡 | 在线播放国产一区二区三区 | 九九热精品在线观看 | www精品美女久久久tv | 免费亚洲精品 | 国产二区视频 | 亚洲欧美另类在线观看 | 亚洲 自拍 另类 欧美 丝袜 | 99免费观看视频 | 中文在线播放 | 成人一区二区av | 国产精品毛片一区二区在线看 | 亚洲免费精品网站 | 欧洲亚洲视频 | 国产一区二区电影 | 亚洲成人在线视频网站 | 精品国产三级a在线观看 | 成人国产精品久久久 | www.国产精品 | 成人一区二区三区视频 | 五月综合久久 | 狠狠操夜夜操 | 国产精品一区二区久久 | 夜添久久精品亚洲国产精品 | 国产精品久久久精品 | 亚洲精品日韩激情在线电影 | 国产视频久久精品 | 天堂视频中文字幕 |