日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,在四邊形ABCD中,已知AB∥CD,直線AB,BC,AD,DC分別與平面α相交于點E,G,H,F.求證:E,F,G,H四點必定共線.

【答案】分析:根據推論3及公理2可知,兩條平行直線AB和CD可以確定一個平面ABCD,并且平面ABCD與平面α的所有的公共點應該在一條直線上,根據題意,這些公共點即E,G,H,F四點,所以這四點必定共線.
解答:解:∵AB∥CD,
∴AB,CD確定一個平面β.
又∵AB∩α=E,AB?β,∴E∈α,E∈β,
即E為平面α與β的一個公共點.
同理可證F,G,H均為平面α與β的公共點.
∵兩個平面有公共點,它們有且只有一條通過公共點的公共直線,
∴E,F,G,H四點必定共線.
點評:在立體幾何的問題中,證明若干點共線時,常運用公理2,即先證明這些點都是某二平面的公共點,而后得出這些點都在二平面的交線上的結論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>
35
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 二区久久 | 日韩国产欧美一区 | 国产精品入口免费视频一 | 日韩视频中文字幕在线观看 | 国产91精品一区二区绿帽 | 操操操操网 | 亚洲 欧美 日韩 精品 | 亚洲乱码国产乱码精品精 | 一区二区精品视频 | 7777久久| 日韩91精品 | 久久久性色精品国产免费观看 | 日韩在线一区二区 | 一区二区免费视频 | 国产综合亚洲精品一区二 | 日韩欧美国产精品一区二区三区 | 一区免费 | 欧美在线一二三 | 亚洲欧洲一区二区三区 | 亚洲国产天堂久久综合 | 国精产品一区一区三区在线观看 | 99精品国产99久久久久久97 | 国产精品成人在线观看 | 国产亚洲tv | 一级黄色生活视频 | 国产一区二区三区四区在线观看 | 日韩极品在线 | 国产日韩精品在线 | 精品国产一区二区三区久久久蜜月 | 午夜天 | 欧美精品1区 | 久久久久久久久久久久福利 | 午夜精品久久久久久久久 | 成人免费黄色片 | 六月丁香在线观看 | 免费黄色在线 | 天天碰天天操 | 麻豆freexxxx性91精品 | 草久在线视频 | 久草新免费 | 欧美一级淫片免费看 |