過雙曲線2x2-y2-8x+6=0的由焦點作直線l交雙曲線于A、B兩點,若|AB|=4,則這樣的直線有( )
A.4條
B.3條
C.2條
D.1條
【答案】分析:過雙曲線2x2-y2-2=0的由焦點作直線l交雙曲線于A、B兩點,當l⊥x軸,則AB為通徑,而通徑長度正好是4,符合題意而樣的直線只有一條;若l經過頂點,此時|AB|=2,故直線l交雙曲線于異支上的A、B兩點且|AB|=4,這樣的直線有且只有兩條,最后綜合可得答案.
解答:解:過雙曲線2x2-y2-2=0的由焦點作直線l交雙曲線于A、B兩點,
若l⊥x軸,則AB為通徑,而通徑長度正好是4,
故直線l交雙曲線于同支上的A、B兩點且|AB|=4,這樣的直線只有一條,
若l經過頂點,此時|AB|=2,故直線l交雙曲線于異支上的A、B兩點且|AB|=4,
這樣的直線有且只有兩條,
故選B.
點評:本題主要考查了直線與圓錐曲線的綜合問題.常采用數形結合思想、化歸思想、韋達定理等來解決.