已知函數.
(1)若,求函數
的單調區間;
(2)若以函數圖像上任意一點
為切點的切線的斜率
恒成立,求實數
的最小值.
科目:高中數學 來源: 題型:解答題
設f(x)=+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數M;
(2)如果對于任意的s,t∈,都有f(s)≥g(t)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數F(x)=f(x)-g(x)在(0,+∞)上單調遞增;
(2)若函數y=-3有四個零點,求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.
(1)若曲線經過點
,曲線
在點
處的切線與直線
垂直,求
的值;
(2)在(1)的條件下,試求函數(
為實常數,
)的極大值與極小值之差;
(3)若在區間
內存在兩個不同的極值點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013·重慶卷)設f(x)=a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,其中
.
(1)當時,求函數
在
處的切線方程;
(2)若函數在區間(1,2)上不是單調函數,試求
的取值范圍;
(3)已知,如果存在
,使得函數
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=ax-(1+a2)x2,其中a>0,區間I={x|f(x)>0}.
(1)求I的長度(注:區間(α,β)的長度定義為β-α);
(2)給定常數k∈(0,1),當1-k≤a≤1+k時,求I長度的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com