【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
【答案】(1);(2)
;(3)線性回歸方程是可靠的.
【解析】
試題分析:(1)從組數據中選取
組數據共有
種情況,其中抽到相鄰兩組數據的情況有
種,所以選取的
組數據恰好是不相鄰
天數據的概率是
;(2)求出
,再根據回歸系數公式求得
,代入樣本中心點
,即可求得
,據此即可求得回歸直線方程;(3)求出
,
的觀測值判斷其是否符合標準,即可判斷方程的可靠性.
試題解析:(1)設抽到不相鄰兩組數據為事件,因為從5組數據中選取2組數據共有10種情況,每種情況都是等可能出現的,其中抽到相鄰兩組數據的情況有4種,
所以 .
故選取的2組數據恰好是不相鄰2天數據的概率是
(2)由數據,求得,
,
.
,
,
.
由公式,求得,
所以y關于x的線性回歸方程為.
(3)當x=10時,,|22-23|<2;
同樣,當x=8時,,|17-16|<2.
所以,該研究所得到的線性回歸方程是可靠的.
科目:高中數學 來源: 題型:
【題目】已知A、B、C是△ABC的三個內角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
:
,曲線
:
(
為參數),以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線,
的極坐標方程;
(Ⅱ)曲線:
(
為參數,
,
)分別交
,
于
,
兩點,當
取何值時,
取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數在區間
上單調遞增;
函數
在其定義域上存在極值.
(1)若為真命題,求實數
的取值范圍;
(2)如果“或
”為真命題,“
且
”為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數,例如,函數f(x)=2x+1(x∈R)是單函數.下列命題:
①函數f(x)=x2(x∈R)是單函數;
②函數f(x)=是單函數;
③若f(x)為單函數,x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調性的函數一定是單函數.
其中的真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
為自然對數的底數),
是
的導函數.
(Ⅰ)當時,求證:
;
(Ⅱ)是否存在正整數,使得
對一切
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點O為坐標原點,橢圓E:(a≥b>0)的右頂點為A,上頂點為B,過點O且斜率為
的直線與直線AB相交M,且
.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經過P,Q兩點,求橢圓E的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產某種產品時的能耗y與產品件數x之間的關系式為y=ax+.且當x=2時,y=100;當x=7時,y=35.且此產品生產件數不超過20件.
(1)寫出函數y關于x的解析式;
(2)用列表法表示此函數,并畫出圖象.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com