【題目】某公司試銷一種成本單價為500元/件的新產品,規定試銷時銷售單價不低于成本單價,又不高于800元/件.經試銷調查,發現銷售量(件)與銷售單價
(元/件)可近似看作一次函數
的關系(如圖所示).
(1)根據圖象,求一次函數的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價—成本總價)為元. 試用銷售單價
表示毛利潤
并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
科目:高中數學 來源: 題型:
【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點.
(1)求證:C1D⊥D1E;
(2)在棱AA1上是否存在一點M,使得BM∥平面AD1E?若存在,求的值,若不存在,說明理由;
(3)若二面角B1AED1的大小為90°,求AD的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若正項數列{}滿足:
,則稱此數列為“比差等數列”.
(1)請寫出一個“比差等數列”的前3項的值;
(2)設數列{}是一個“比差等數列”
(i)求證:;
(ii)記數列{}的前
項和為
,求證:對于任意
,都有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.
(1)求橢圓C的方程;
(2)當MA,MB與x軸所構成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統計,作出的莖葉圖如下圖:記成績不低于70分者為“成績優良”.
(1)分別計算甲、乙兩班20個樣本中,化學分數前十的平均分,并大致判斷哪種教學方式的教學效果更佳;
(2)由以上統計數據填寫下面列聯表,并判斷能否在犯錯誤的概率不超過
的前提下認為“成績優良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總計 |
附:
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究學生使用智能手機對學習的影響.部分統計數據如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優秀 | 4 | 8 | 12 |
學習成績不優秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經計算的觀測值為10,則下列選項正確的是( )
A. 有99.5%的把握認為使用智能手機對學習有影響
B. 有99.5%的把握認為使用智能手機對學習無影響
C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響
D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com