已知函數f(x)=loga(x+1)(a>1),若函數y=g(x)的圖象上任意一點P關于原點對稱的點Q的軌跡恰好是函數f(x)的圖象.
(1)寫出函數g(x)的解析式;
(2)當x∈[0,1)時總有f(x)+g(x)≥m成立,求m的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax2-|x|+2a-1(a為實常數).
(1)若a=1,作函數f(x)的圖象;
(2)設f(x)在區間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設h(x)=,若函數h(x)在區間[1,2]上是增函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+4ax+2a+6.
(1) 若f(x)的值域是[0,+∞),求a的值;
(2) 若函數f(x)≥0恒成立,求g(a)=2-a|a-1|的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)是定義在R上的偶函數,且x≥0時,.
(1)求f(-1)的值;
(2)求函數f(x)的值域A;
(3)設函數的定義域為集合B,若AÍB,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數的定義域為
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求證:是定值;
(2)判斷并說明有最大值還是最小值,并求出此最大值或最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(
).
(1)證明:當時,
在
上是減函數,在
上是增函數,并寫出當
時
的單調區間;
(2)已知函數,函數
,若對任意
,總存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的一個上界.
已知函數,
.
(1)若函數為奇函數,求實數
的值;
(2)在(1)的條件下,求函數在區間
上的所有上界構成的集合;
(3)若函數在
上是以3為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設定義域為的函數
(Ⅰ)在平面直角坐標系內作出函數的圖象,并指出
的單調區間(不需證明);
(Ⅱ)若方程有兩個解,求出
的取值范圍(只需簡單說明,不需嚴格證明).
(Ⅲ)設定義為的函數
為奇函數,且當
時,
求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
上海某化學試劑廠以x千克/小時的速度生產某種產品(生產條件要求),為了保證產品的質量,需要一邊生產一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是
元.
(1)要使生產運輸該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產運輸900千克該產品獲得的利潤最大,問:該工廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com