(本小題滿分12分)
在直角坐標(biāo)系

中,橢圓

的左、右焦點分別為

. 其中

也是拋物線

的焦點,點

為

與

在第一象限的交點,且

(Ⅰ)求

的方程;
(Ⅱ)若過點

的直線

與

交于不同的兩點

.

在

之間,試求

與

面積之比的取值范圍.(O為坐標(biāo)原點)
解:(Ⅰ) 依題意知

,設(shè)

.由拋物線定義得

,即

.
將

代人拋物線方程得

(2分),進而由

及

解得

.故

的方程為

(4分)
(Ⅱ)依題意知直線

的斜率存在且不為0,設(shè)

的方程為

代人

,
整理得

(6分)
由

,解得

.設(shè)

,則

(1) (8分)
令

且

.將

代人(1)得

消去

得

(10分)即

,
即
解得

.

故

與

面積之比的取值范圍為

(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
橢圓

的兩個焦點F
1、F
2,點P在橢圓C上,且PF
1⊥F
1F
2,且|PF
1|=

(I)求橢圓C的方程。
(II)以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓

短軸

的一個端點

,離心率

.過

作直線

與橢圓交于另一點

,與

軸交于點

(

不同于原點

),點

關(guān)于

軸的對稱點為

,直線

交

軸于點

.
(Ⅰ)求橢圓的方程;
(Ⅱ)求

的值.
[]

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓

的左、右焦點分別為

、

,離心率

,右準(zhǔn)線方程為

.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點

的直線

與該橢圓交于
M、
N兩點,且

,求直線

的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題10分)
當(dāng)m取何值時,直線L:y=x+m與橢圓9x2+16y2=144相切、相交、相離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.已知橢圓C:

的離心率為

,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線

:

與橢圓C交于

,

兩點,點

,且

,求直線

的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓

經(jīng)過點

,離心率為

,動點

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線

截得的弦長為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
從一塊短軸長為2b的橢圓形玻璃鏡中劃出一塊面積最大的矩形,其面積的取值范圍是[3b
2,4b
2],則這一橢圓離心率e的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓

和雙曲線

有相同的焦點F
1、F
2,點P為橢圓和雙曲線的一個交點,則|PF
1|·|PF
2|的值是
。
查看答案和解析>>