已知函數(shù)的圖象的一部分如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)
的最大值與最小值及相應(yīng)的
的值.
(1);
(2)當(dāng)時(shí),
的最大值為
;當(dāng)
時(shí),
的最小值
.
【解析】
試題分析:(1)先根據(jù)圖象得出最大值,以及周期,從而求出
的值,最后將最高點(diǎn)
代入函數(shù)解析式并結(jié)合
的取值范圍得出
的值,從而確定函數(shù)
的解析式;(2)求出函數(shù)
結(jié)合誘導(dǎo)公式以及輔助角公式將函數(shù)
的解析式化簡為
的形式,并計(jì)算出
的取值范圍,然后結(jié)合正弦曲線得到函數(shù)的最值,并找出相應(yīng)的最值時(shí),
的值,從而求解出函數(shù)取最值時(shí)的
值.
試題解析:(1)由圖像知,
,∴
,得
.
將最高點(diǎn)代入,得
,
∴;
(2)
=,
∵,∴
,
∴當(dāng),即
時(shí),
的最大值為
;當(dāng)
,即
時(shí),
的最小值
.
考點(diǎn):1.三角函數(shù)圖象與三角函數(shù)解析式;2.三角函數(shù)的最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:廣西桂林中學(xué)09-10學(xué)年第二學(xué)期高一期中考試 題型:解答題
.
如圖,某市擬在長為8km的道路OP的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinx(A>0,
>0) x
[0,4]的圖象,且圖象的最高點(diǎn)為S(3,2
);賽道的后一部分為折線段MNP,為保證參賽運(yùn)動(dòng)員的安全,限定
MNP=120
(I)求A , 的值和M,P兩點(diǎn)間的距離;
(II)應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長?(已知在中
所對(duì)的邊分別為
;滿足:
)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com