日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設函數,且f(1)=1,f(2)=log312.求a,b的值.
【答案】分析:(1)由f(1)=3,可得a+a-1=3,再由f(2)=a2+a-2=(a+a-12-2,運算求得結果.
(2)由f(1)=1,求得a-b=3,再由f(2)=log312 求得a2-b2=12,由此求得a,b的值.
解答:解:(1)∵f(1)=3,∴a+a-1=3,---(2分)
∴f(2)=a2+a-2=(a+a-12-2=9-2=7.--------(6分)
(2)∵f(1)=1,
∴log3(a-b)=1,
∴a-b=3.----(9分)
∵f(2)=log312,

∴a2-b2=12.-----(12分)
由  解得  ----------(14分).
點評:本題主要考查對數函數的單調性和特殊點,指數型復合函數的性質的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)的定義域為x∈R且x≠1,已知f(x+1)為奇函數,當x<1時,f(x)=2x2-x+1,那么,當x>1時,f(x)的遞減區間是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知f(x)是一次函數,且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)滿足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數,對任意x、y∈R滿足關系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數f(x)、g(x)都是奇函數.
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數y=f(x)圖象上三點,且2x2=x1+x3,當a>0時,△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知f(x)=2+log4x(1≤x≤16),求函數g(x)=[f(x)]2+f(x2)的值域.
(2)若直線y=4a與y=|ax-2|(a>0且a≠1)的圖象有兩個公共點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日本久久 | 一本色道久久综合亚洲精品按摩 | 国产日韩精品一区二区 | 亚洲精品免费看 | 日日夜夜国产 | 久久国内精品 | 哪里有免费的黄色网址 | 久久国产欧美日韩精品 | 国产精品国产成人国产三级 | 欧美一区二区三区在线看 | 国产成人精品一区二区三区网站观看 | 天天艹综合 | 久久综合一区二区 | 国产在线小视频 | 国产99999 | www国产在线观看 | 久久久久综合 | 亚洲美女视频一区二区三区 | 电影一区二区在线观看 | 日韩精品 电影一区 亚洲 | 日韩av福利 | 色综合一区| 色偷偷噜噜噜亚洲男人 | 99福利| 色偷偷噜噜噜亚洲男人 | 狠狠操天天干 | 久久久久av| 久久精品一区 | 日本黄色大片 | 在线视频a| www国产亚洲精品久久网站 | 91国内精品 | 二区视频 | 国产高清精品在线 | 久热av在线 | 91精品国产91久久久久久蜜臀 | 免费观看一级特黄欧美大片 | 日韩成人免费 | julia中文字幕久久一区二区 | 欧美精品在线一区二区三区 | 曰本人做爰大片免费观看 |