設(shè),
.
(1)令,討論
在
內(nèi)的單調(diào)性并求極值;
(2)求證:當(dāng)時(shí),恒有
.
(1) 在
內(nèi)是減函數(shù),在
內(nèi)是增函數(shù), 在
處取得極小值
;(2)詳見解析.
解析試題分析:(1)先根據(jù)求導(dǎo)法求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,求出單調(diào)區(qū)間及極值即可.
(2)欲證x>ln2x-2a ln x+1,即證x-1-ln2x+2alnx>0,也就是要證f(x)>f(1),根據(jù)第一問的單調(diào)性即可證得.
試題解析:解(1)解:根據(jù)求導(dǎo)法則有,
故, 3分
于是,
列表如下:
故知2 0 遞減 極小值 遞增 在
內(nèi)是減函數(shù),在
內(nèi)是增函數(shù),所以,在
處取得極小值
. 6
(2)證明:由知,
的極小值
.
于是由上表知,對(duì)一切,恒有
.
從而當(dāng)時(shí),恒有
,故
在
內(nèi)單調(diào)增加.
所以當(dāng)時(shí),
,即
.
故當(dāng)時(shí),恒有
. .12
考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.函數(shù)恒成立問題;3.利用導(dǎo)數(shù)研究函數(shù)的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
且
.
(1)求證:函數(shù)在點(diǎn)
處的切線與
總有兩個(gè)不同的公共點(diǎn);
(2)若函數(shù)在區(qū)間
上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最小值;
(3)記函數(shù)圖象為曲線
,設(shè)點(diǎn)
,
是曲線
上不同的兩點(diǎn),點(diǎn)
為線段
的中點(diǎn),過點(diǎn)
作
軸的垂線交曲線
于點(diǎn)
.試問:曲線
在點(diǎn)
處的切線是否平行于直線
?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)
.
(Ⅰ)當(dāng)時(shí),
(1)若,求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于的不等式
在區(qū)間
上有解,求
的取值范圍;
(Ⅱ)已知曲線在其圖象上的兩點(diǎn)
,
(
)處的切線分別為
.若直線
與
平行,試探究點(diǎn)
與點(diǎn)
的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若曲線在點(diǎn)
處的切線與直線
平行,求
的值;
(2)求證函數(shù)在
上為單調(diào)增函數(shù);
(3)設(shè),
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項(xiàng)和為
,且
,對(duì)任意
,都有
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+ax2-4(),
是f(x)的導(dǎo)函數(shù).
(1)當(dāng)a=2時(shí),對(duì)任意的求
的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com