本小題滿分10分)
已知直線l經(jīng)過點(diǎn)P(,1),傾斜角
,在極坐標(biāo)系下,圓C的極坐標(biāo)方程為
。
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)P到A,B兩點(diǎn)的距離之積。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn),Q都在曲線C:
(β為參數(shù))上,對應(yīng)參數(shù)分別為
與(0<
<2π),M為PQ的中點(diǎn)。
(Ⅰ)求M的軌跡的參數(shù)方程
(Ⅱ)將M到坐標(biāo)原點(diǎn)的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),參數(shù)
,點(diǎn)Q在曲線C:
上.
(Ⅰ)求點(diǎn)P的軌跡方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P與點(diǎn)Q之間的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若曲線與曲線
只有一個(gè)公共點(diǎn),求
的取值范圍;
(2)當(dāng)時(shí),求曲線
上的點(diǎn)與曲線
上的點(diǎn)的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(t為參數(shù),α為直線
的傾斜角),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為
.
(1) 若直線與圓C相切,求
的值;
(2) 若直線
與圓C交與A,B兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓相交于兩點(diǎn)A,B,求點(diǎn)P到A,B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某醫(yī)療研究所為了檢驗(yàn)新開發(fā)的流感疫苗對甲型H1N1流感的預(yù)防作用,把1000名注射了疫苗的人與另外1000名未注射疫苗的人的半年的感冒記錄作比較,提出假設(shè)H0:“這種疫苗不能起到預(yù)防甲型H1N1流感的作用”,并計(jì)算出,則下列說法正確的( )
A.這種疫苗能起到預(yù)防甲型H1N1流感的有效率為1% |
B.若某人未使用該疫苗,則他在半年中有99%的可能性得甲型H1N1 |
C.有1%的把握認(rèn)為“這種疫苗能起到預(yù)防甲型H1N1流感的作用” |
D.有99%的把握認(rèn)為“這種疫苗能起到預(yù)防甲型H1N1流感的作用” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
對四組數(shù)據(jù)進(jìn)行統(tǒng)計(jì),獲得以下散點(diǎn)圖,關(guān)于其相關(guān)系數(shù)的比較,正確的是( ).
A.r2<r4<0<r3<r1 | B.r4<r2<0<r1<r3 | C.r4<r2<0<r3<r1 | D.r2<r4<0<r1<r3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com