日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知直線(m+1)x+(n+
1
2
)y=
6+
6
2
與圓(x-3)2+(y-
6
)2=5
相切,若對任意的m,n∈R+均有不等式2m+n≥k成立,那么正整數k的最大值是(  )
分析:利用圓心(3,
6
)到直線(m+1)x+(n+
1
2
)y-
6+
6
2
=0的距離等于半徑
5
,令2m+n=t,求得t的最小值即為正整數k的最大值.
解答:解:∵直線(m+1)x+(n+
1
2
)y-
6+
6
2
=0與圓(x-3)2+(y-
6
)
2
=5相切,
∴圓心(3,
6
)到直線(m+1)x+(n+
1
2
)y-
6+
6
2
=0的距離d等于半徑
5

即d=
|3(m+1)+
6
(n+
1
2
)-
6+
6
2
|
(m+1)2+(n+
1
2
)
2
=
5

|3m+
6
n|
(m+1)2+(n+
1
2
)
2
=
5

兩端平方,整理得:4m2+n2-5(2m+n)-
25
4
=-6
6
mn,
即(2m+n)2-5(2m+n)-
25
4
=(4-6
6
)mn.
∴(3
6
-2)•2mn=
25
4
+5(2m+n)-(2m+n)2≤(3
6
-2)•(
2m+n
2
)
2

令t=2m+n(t>0),
則(3
6
+2)t2-20t-25≥0,
∵△=(-20)2-4×(-25)×(3
6
+2)=600+300
6

∴t≥
20+10
6+3
6
2(3
6
+2)
=
10+5
6+3
6
(3
6
+2)

∴tmin=
10+5
6+3
6
(3
6
+2)
∈(3,4),
∵正整數k≤2m+n=t恒成立,
∴k=3.
故選A.
點評:本題考查直線與圓的位置關系,突出考查點到直線間的距離及運算能力,考查轉化思想與方程思想的綜合應用,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l:x=4與x軸相交于點M,P是平面上的動點,滿足PM⊥PO(O是坐標原點).
(1)求動點P的軌跡C的方程;
(2)過直線l上一點D(D≠M)作曲線C的切線,切點為E,與x軸相交點為F,若
DE
=
1
2
DF
,求切線DE的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題
(1)已知直線m,l,平面α,β,若m⊥β,l?α,α∥β,則m⊥l
(2)
a
b
>0
,是
a
b
的夾角為銳角的充要條件;
(3)如果函數y=f(x)為奇函數,則f(0)=0
(4)若f'(x0)=0,則f(x0)為極大值或極小值
(5)y=sin(2x+
π
3
)
的圖象的一個對稱中心是(
π
3
,0)

以上命題正確的是
(1)(5)
(1)(5)
(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l0:x-y+2=0和圓C:x2+y2-8x+8y+14=0,設與直線l0和圓C都相切且半徑最小的圓為圓M,直線l與圓M相交于A,B兩點,且圓M上存在點P,使得
OP
=
OA
+
OB
a
,其中
a
=(1 , 3)

(1)求圓M的標準方程;
(2)求直線l的方程及相應的點P坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線(m+1)x+(n+
1
2
)y=
6+
6
2
與圓(x-3)2+(y-
6
)2=5
相切,若對任意的m,n∈R+均有不等式2m+n≥k成立,那么正整數k的最大值是(  )
A.3B.5C.7D.9

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久国产愉拍 | 久久亚洲国产精品 | 中文字幕亚洲字幕一区二区 | 息与子猛烈交尾一区二区 | 一级视频黄色 | 性视频网站免费 | 亚洲国产一区二区三区在线观看 | 一级欧美| 久久国产一区二区 | 亚洲视频a | 黄av网站| 国产日韩欧美久久 | 一区二区三区在线免费看 | 欧美日韩激情在线一区二区三区 | 国产精品一区二区三区99 | 91精品国产乱码久久久久久久久 | 91亚洲精 | 久久免费精品 | 国产高清视频 | 可以在线观看的av网站 | 91视频免费版污 | 日韩中文一区 | 2018国产精品 | 国产中文一区 | 国产精品久久久久久久久久久新郎 | 国产综合久久 | 成人影院网站ww555久久精品 | 性视频网站免费 | 国产乱码精品一区二区三区五月婷 | av资源首页| 黄色毛片网站在线观看 | 国产美女视频网站 | 福利视频网址导航 | www日韩欧美 | 美女中文字幕视频 | 久久一区二区视频 | 青青草视频免费观看 | 玖玖操| 国产高清精品一区二区三区 | 国产九九九精品 | 国产精品视频在线观看 |