【題目】目前有聲書正受著越來越多人的喜愛.某有聲書公司為了解用戶使用情況,隨機選取了名用戶,統計出年齡分布和用戶付費金額(金額為整數)情況如下圖.
有聲書公司將付費高于元的用戶定義為“愛付費用戶”,將年齡在
歲及以下的用戶定義為“年輕用戶”.已知抽取的樣本中有
的“年輕用戶”是“愛付費用戶”.
(1)完成下面的列聯表,并據此資料,能否有
的把握認為用戶“愛付費”與其為“年輕用戶”有關?
愛付費用戶 | 不愛付費用戶 | 合計 | |
年輕用戶 | |||
非年輕用戶 | |||
合計 |
(2)若公司采用分層抽樣方法從“愛付費用戶”中隨機選取人,再從這
人中隨機抽取
人進行訪談,求抽取的
人恰好都是“年輕用戶”的概率.
.
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(Ⅰ)若曲線在點
處的切線方程為
,其中
是自然對數的底數,求
的值:
(Ⅱ)若函數是
內的減函數,求正數
的取值范圍;
(Ⅲ)若方程無實數根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐中,
底面
,
,
,
,
.
(1)當變化時,點
到平面
的距離是否為定值?若是,請求出該定值;若不是,請說明理由;
(2)當直線與平面
所成的角為45°時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為滿足人們的閱讀需求,圖書館設立了無人值守的自助閱讀區,提倡人們在閱讀后將圖書分類放回相應區域.現隨機抽取了某閱讀區500本圖書的分類歸還情況,數據統計如下(單位:本).
文學類專欄 | 科普類專欄 | 其他類專欄 | |
文學類圖書 | 100 | 40 | 10 |
科普類圖書 | 30 | 200 | 30 |
其他圖書 | 20 | 10 | 60 |
(1)根據統計數據估計文學類圖書分類正確的概率;
(2)根據統計數據估計圖書分類錯誤的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經得到了很好的控制.然而,小王同學發現,每個國家在疫情發生的初期,由于認識不足和措施不到位,感染人數都會出現快速的增長.下表是小王同學記錄的某國連續8天每日新型冠狀病毒感染確診的累計人數.
日期代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累計確診人數 | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
為了分析該國累計感染人數的變化趨勢,小王同學分別用兩種模型:①,②
對變量
和
的關系進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差
):經過計算得
,
,
,
,其中
,
.
(1)根據殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由;
(2)根據(1)問選定的模型求出相應的回歸方程(系數均保留一位小數);
(3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數尚未公布.小王同學認為,如果防疫形勢沒有得到明顯改善,在數據公布之前可以根據他在(2)問求出的回歸方程來對感染人數作出預測,那么估計該地區第9天新型冠狀病毒感染確診的累計人數是多少.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某公司生產線生產的某種產品中抽取1000件,測量這些產品的一項質量指標,由檢測結果得如圖所示的頻率分布直方圖:
(1)求這1000件產品質量指標的樣本平均數和樣本方差
(同一組中的數據用該組區間的中點值作代表);
(2)由直方圖可以認為,這種產品的質量指標值服從正態分布
,其中
近似為樣本平均數
近似為樣本方差
.
(i)利用該正態分布,求;
(ⅱ)已知每件該產品的生產成本為10元,每件合格品(質量指標值)的定價為16元;若為次品(質量指標值
),除了全額退款外且每件次品還須賠付客戶48元.若該公司賣出10件這種產品,記
表示這件產品的利潤,求
.
附:,若
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的
倍,
為側棱
上的點.
(1)求證:;
(2)若平面
,求二面角
的大小;
(3)在(2)的條件下,側棱上是否存在一點
,使得
平面
.若存在,求
的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com