【題目】如圖,已知是直角梯形,且
,平面
平面
,
,
,
,
是
的中點.
(1)求證:平面
;
(2)求平面與平面
所成銳二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的左、右頂點分別為A,B,左焦點為F,O為原點,點P為橢圓C上不同于A、B的任一點,若直線PA與PB的斜率之積為
,且橢圓C經過點
.
(1)求橢圓C的方程;
(2)若P點不在坐標軸上,直線PA,PB交y軸于M,N兩點,若直線OT與過點M,N的圓G相切.切點為T,問切線長是否為定值,若是,求出定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖a是某市參加2012年高考的學生身高條形統計圖,從左到右的各條形表示的學生人數依次記為、
、…、
[如
表示身高(單位:cm)在
內的學生人數].圖b是統計圖a中身高在一定范圍內學生人數的一個算法流程圖.現要統計身高在
(含160cm,不含180cm)的學生人數,那么在流程圖中的判斷框內應填寫的條件是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司有一款保險產品的歷史收益率(收益率利潤
保費收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產品的收益率的平均值;
(2)設每份保單的保費在20元的基礎上每增加元,對應的銷量為
(萬份).從歷史銷售記錄中抽樣得到如下5組
與
的對應數據:
| 25 | 30 | 38 | 45 | 52 |
銷量為 | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與
有較強的線性相關關系,且據此計算出的回歸方程為
.
(ⅰ)求參數的值;
(ⅱ)若把回歸方程當作
與
的線性關系,用(1)中求出的收益率的平均值作為此產品的收益率,試問每份保單的保費定為多少元時此產品可獲得最大利潤,并求出最大利潤.注:保險產品的保費收入
每份保單的保費
銷量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點
為動點,以
為直徑的圓內切于
.
(1)證明為定值,并求點
的軌跡
的方程;
(2)過點的直線
與
交于
兩點,直線
過點
且與
垂直,
與
交于
兩點,
為
的中點,求
的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com