【題目】據市場調查發現,某種產品在投放市場的30天中,其銷售價格(元)和時間
(天)的關系如圖所示.
(1)求銷售價格(元)和時間
(天)的函數關系式;
(2)若日銷售量(件)與時間
(天)的函數關系式是
,問該產品投放市場第幾天時,日銷售額
(元)最高,且最高為多少元?
【答案】(Ⅰ);(Ⅱ)在第10天時,日銷售額最大,最大值為900元.
【解析】
試題(Ⅰ)通過討論t的范圍,求出函數的表達式即可;(Ⅱ)先求出函數的表達式,通過討論t的范圍,求出函數的最大值即可.
解:(Ⅰ)①當0≤t<20,t∈N時,
設P=at+b,將(0,20),(20,40)代入,得解得
所以P=t+20(0≤t<20,t∈N).
②當20≤t≤30,t∈N時,
設P=at+b,將(20,40),(30,30)代入,解得
所以 P=﹣t+60(20≤t≤30,t∈N),)
綜上所述
(Ⅱ)依題意,有y=PQ,
得
化簡得
整理得
①當0≤t<20,t∈N時,由y=﹣(t﹣10)2+900可得,當t=10時,y有最大值900元.
②當20≤t≤30,t∈N時,由y=(t﹣50)2﹣100可得,當t=20時,y有最大值800元.
因為 900>800,所以在第10天時,日銷售額最大,最大值為900元.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=,其中c為常數,且函數f(x)的圖象過原點.
(1)求c的值,并求證:f()+f(x)=1;
(2)判斷函數f(x)在(-1,+∞)上的單調性,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某桶裝水經營部每天的房租、人員工資等固定成本為200元,每桶水的進價為5元,銷售單價與日均銷售量的關系如圖所示.
銷售單價/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請根據以上數據作出分析,這個經營部怎樣定價才能獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.9
B.18
C.20
D.35
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:,直線
過定點
.
(1)若與圓相切,求
的方程;
(2)若與圓相交于
兩點,線段
的中點為
,又
與
的交點為
,判斷
是否為定值.若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=2(cos θ+sin θ).
(1)求C的直角坐標方程;
(2)直線l: (t為參數)與曲線C交于A,B兩點,與y軸交于點E,求|EA|+|EB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區開設分店.為了確定在該區開設分店的個數,該公司對該市已開設分店的其他區的數據作了初步處理后得到下列表格.記x表示在各區開設分店的個數,y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)在年收入之和為2.5(百萬元)和3(百萬元)兩區中抽取兩分店調查,求這兩分店來自同一區的概率
(2)該公司已經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(3)假設該公司在A區獲得的總年利潤z(單位:百萬元)與x,y之間的關系為z=y-0.05x2-1.4,請結合(1)中的線性回歸方程,估算該公司應在A區開設多少個分店,才能使A區平均每個分店的年利潤最大?
參考公式:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com