【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0且a≠1)是R上的單調(diào)函數(shù),則a的取值范圍是( )
A. (0,] B. [
) C. [
] D. (
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、
是橢圓
上不同的兩點,
的中點坐標(biāo)為
.
(1)證明:直線經(jīng)過橢圓
的右焦點.
(2)設(shè)直線不經(jīng)過點
且與橢圓
相交于
,
兩點,若直線
與直線
的斜率的和為1,試判斷直線
是否經(jīng)過定點,若經(jīng)過定點,請求出該定點;若不經(jīng)過定點,請給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓
,如圖,
分別交
軸正半軸于點
.射線
分別交
于點
,動點
滿足直線
與
軸垂直,直線
與
軸垂直.
(1)求動點的軌跡
的方程;
(2)過點作直線
交曲線
與點
,射線
與點
,且交曲線
于點
.問:
的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯誤命題是
A. “若,則
”的逆命題為真
B. 線性回歸直線必過樣本點的中心
C. 在平面直角坐標(biāo)系中到點和
的距離的和為
的點的軌跡為橢圓
D. 在銳角中,有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為
,直線
:
,直線
:
.以極點
為原點,極軸為
軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,
的直角坐標(biāo)方程以及曲線
的參數(shù)方程;
(2)已知直線與曲線
交于
,
兩點,直線
與曲線C交于
,
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正數(shù),f(x)=|x+a|+|x+b|+|x﹣c|.
(1)若a=b=c=1,求函數(shù)f(x)的最小值;
(2)若f(0)=1且a,b,c不全相等,求證:b3c+c3a+a3b>abc.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com