日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數).
(1)設u=x1x2,求u的取值范圍;
(2)求證:當k≥1時不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立;
(3)求使不等式(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立的k2的范圍.
(1)x1x2≤(
x1+x2
2
)2=
k2
4
,當且僅當x1=x2=
k
2
時等號成立,
故u的取值范圍為(0,
k2
4
]

(2)解法一(函數法)(
1
x1
-x1)(
1
x2
-x2)=
1
x1x2
+x1x2-
x1
x2
-
x2
x1
=x1x2+
1
x1x2
-
x21
+
x22
x1x2
=x1x2-
k2-1
x1x2
+2=u-
k2-1
u
+2

0<u≤
k2
4
,又k≥1,k2-1≥0,
∴在(0,
k2
4
]
上是增函數
所以(
1
x1
-x1)(
1
x2
-x2)

=u-
k2-1
u
+2
k2
4
-
k2-1
k2
4
+2=
k2
4
-2+
4
k2
=(
2
k
-
k
2
)2

即當k≥1時不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
成立.
解法二(不等式證明的作差比較法)
(
1
x1
-x1)(
1
x2
-x2)-(
k
2
-
2
k
)2

=
1
x1x2
+x1x2-
x1
x2
-
x2
x1
-
4
k2
-
k2
4
+2

=
1
x1x2
-
4
k2
-(
k2
4
-x1x2)-(
x1
x2
+
x2
x1
-2)

=
k2-4x1x2
k2x1x2
-
k2-4x1x2
4
-
(x1-x2)2
x1x2

將k2-4x1x2=(x1-x22代入得:
(
1
x1
-x1)(
1
x2
-x2)-(
k
2
-
2
k
)2

=
(x1-x2)2(4-k2x1x2-4k2)
4k2x1x2

∵(x1-x22≥0,k≥1時4-k2x1x2-4k2=4(1-k2)-k2x1x2<0,
(x1-x2)2(4-k2x1x2-4k2)
4k2x1x2
≤0

即當k≥1時不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
成立.
(3)解法一(函數法)
(
1
x1
-x1)(
1
x2
-x2)
=u+
1-k2
u
+2=f(u)

(
k
2
-
2
k
)2=f(
k2
2
)

即求使f(u)≥f(
k2
4
)
u∈(0,
k2
4
]
恒成立的k的范圍.
由(2)知,要使(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2

對任意(x1,x2)∈D恒成立,必有0<k<1,
因此1-k2>0,
∴函數f(u)=u+
1-k2
u
+2
(0,
1-k2
]
上遞減,在[
1-k2
,+∞)
上遞增,
要使函數f(u)在(0,
k2
4
]
上恒有f(u)≥f(
k2
4
)
,必有
k2
4
1-k2
,即k4+16k2-16≤0,
解得0<k2≤4
5
-8

解法二(不等式證明的作差比較法)
由(2)可知(
1
x1
-x1)(
1
x2
-x2)-(
k
2
-
2
k
)2
=
(x1-x2)2(4-k2x1x2-4k2)
4k2x1x2

要不等式恒成立,必須4-k2x1x2-4k2≥0恒成立
x1x2
4-4k2
k2
恒成立
0<x1x2
k2
4
k2
4
4-4k2
k2
,即k4+16k2-16≤0,
解得0<k2≤4
5
-8

因此不等式(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2
恒成立的k2的范圍是0<k2≤4
5
-8
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合D={(x1,x2)|x1>0,x2>0,x1+x2=k}(其中k為正常數).
(1)設u=x1x2,求u的取值范圍;
(2)求證:當k≥1時不等式(
1
x1
-x1)(
1
x2
-x2)≤(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立;
(3)求使不等式(
1
x1
-x1)(
1
x2
-x2)≥(
k
2
-
2
k
)2
對任意(x1,x2)∈D恒成立的k2的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合D={( x1,x2)|x 1>0,x 2>0,x1+x2=k },其中k為正常數
(1)若k=2,且u=x1?x2,求u的取值范圍
(2)若k=2,且y=(
1
x1
-x1)(
1
x2
-x2)
,求y的取值范圍.
(3)設y1=(
1
x1
-x1)(
1
x2
-x2)
y2=(
k
2
-
2
k
)2
,探究判斷y1和y2的大小關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•西城區一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數學 來源:湖南省長沙市一中2010屆高三上學期第二次月考(理) 題型:解答題

 已知集合D = {(x1x2)|x1>0,x2>0,x1 + x2 = kk為正常數}.

(Ⅰ)設u = x1x2,(x1x2) ∈D,u的取值范圍T;

(Ⅱ)求證:當k≥1時,不等式對任意(x1x2) ∈D恒成立;

(Ⅲ)求使不等式對任意(x1x2) ∈D恒成立的k的范圍.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色欧美综合 | 欧美成人h版在线观看 | 中文不卡在线 | 久久亚洲春色中文字幕久久久 | 精品一区二区在线观看 | 欧美一区二区三区视频 | 精品国产黄a∨片高清在线 毛片国产 | 欧美一区二区久久久 | 久久综合伊人77777 | 欧美一区二区三区aa大片漫 | 欧美国产日韩一区二区 | 成人黄色电影在线观看 | 男女视频一区二区 | 狠狠狠 | 爱爱视频免费 | 免费色在线 | 午夜国产一级片 | 国产精久久一区二区三区 | 成人欧美一区二区三区在线播放 | 亚洲无吗天堂 | 欧美2区| 精品国产一区二区三区性色av | 亚洲国产精品久久久久秋霞蜜臀 | 国产乱肥老妇国产一区二 | 污网站免费在线观看 | 天天干人人 | 黄a在线观看 | 国产免费一区 | 日日做夜夜操 | 91精品国产欧美一区二区 | 黄色av资源 | 成人午夜sm精品久久久久久久 | 男女小网站 | 日本三级欧美三级 | 国产一区二区三区视频观看 | 在线看黄色av | 色就是色欧美 | 久久久国产一区 | 日本久久久久久 | 亚洲啊v | 国产精品视频一区二区三区不卡 |