【題目】已知圓M的圓心在直線:
上,與直線
:
相切,截直線
:
所得的弦長為6.
(1)求圓M的方程;
(2)過點的兩條成
角的直線分別交圓M于A,C和B,D,求四邊形
面積的最大值.
【答案】(1)(2)
【解析】
(1)設(shè)圓的標(biāo)準(zhǔn)方程,將圓心代入直線的方程,由點到直線距離公式求得圓M到
的距離,由弦長公式及點到直線距離公式表示出直線
與圓的關(guān)系,解方程組即可求得
的值,即可求得圓M的標(biāo)準(zhǔn)方程
(2)解法1:作,
,令
,
,討論
或
兩種情況:當(dāng)
時,由余弦定理表示出
,而
、
、
、
四點共圓,根據(jù)正弦定理求得
,進而求得
,結(jié)合基本不等式即可求得
,即可求得四邊形
面積的最大值;當(dāng)
時,由基本不等式求得
,即可由二次函數(shù)性質(zhì)求得四邊形
面積的最大值.
解法2:結(jié)合三角形面積公式可得,由基本不等式可知
,討論
或
兩種情況,即可確定四邊形
面積的最大值.
(1)設(shè)圓M的方程為:
則,解得:
,
∴所求圓方程為
(2)解法1:
如圖作,
,令
,
,
或
當(dāng)時,
,
因、
、
、
四點共圓,
由正弦定理,
∴,
又,
∴,
,
,當(dāng)且僅當(dāng)
時取等,
當(dāng)時,
,
∴,
又,
所以,
綜上所述,四邊形面積的最大值為
.
解法2:
(當(dāng)且僅當(dāng)
時取等號),
要使得,則直線PM應(yīng)是
的平分線,
當(dāng)時,圓心M到直線AC、BD的距離為
,則
,
.
當(dāng)時,圓心M到直線AC、BD的距離為
,則
,
.
綜上所述,四邊形面積的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù),且滿足
,當(dāng)
時,
,當(dāng)
時,
的最大值為
.
(1)求實數(shù)的值;
(2)函數(shù),若對任意的
,總存在
,使不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,且離心率為
,
為橢圓上任意一點,當(dāng)
時,
的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓
上異于橢圓頂點的一點,延長直線
,
分別與橢圓交于點
,
,設(shè)直線
的斜率為
,直線
的斜率為
,求證:
為定值.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)由題
,由此求出
,可得橢圓
的方程;
(2)設(shè),
,
當(dāng)直線的斜率不存在時,可得
;
當(dāng)直線的斜率不存在時,同理可得
.
當(dāng)直線、
的斜率存在時,
,
設(shè)直線的方程為
,則由
消去
通過運算可得
,同理可得
,由此得到直線
的斜率為
,
直線
的斜率為
,進而可得
.
試題解析:(1)設(shè)由題
,
解得,則
,
橢圓
的方程為
.
(2)設(shè),
,
當(dāng)直線的斜率不存在時,設(shè)
,則
,
直線的方程為
代入
,可得
,
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當(dāng)直線的斜率不存在時,同理可得
.
當(dāng)直線、
的斜率存在時,
,
設(shè)直線的方程為
,則由
消去
可得:
,
又,則
,代入上述方程可得
,
,則
,
設(shè)直線的方程為
,同理可得
,
直線
的斜率為
,
直線
的斜率為
,
.
所以,直線與
的斜率之積為定值
,即
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為
,
,消去參數(shù)可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),
,(
),
,
,
當(dāng) 時,
,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域為
;
(1)求實數(shù)的取值范圍;
(2)設(shè)實數(shù)為
的最大值,若實數(shù)
,
,
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊運動員進行射擊訓(xùn)練,前三次射擊在靶上的著彈點剛好是邊長為
的等邊三角形的三個頂點.
(Ⅰ)第四次射擊時,該運動員瞄準(zhǔn)區(qū)域射擊(不會打到
外),則此次射擊的著彈點距
的距離都超過
的概率為多少?(彈孔大小忽略不計)
(Ⅱ) 該運動員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間
內(nèi).現(xiàn)從這
次射擊成績中隨機抽取兩次射擊的成績(記為
和
)進行技術(shù)分析.求事件“
”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了配合新冠疫情防控,某市組織了以“停課不停學(xué),成長不停歇”為主題的“空中課堂”,為了了解一周內(nèi)學(xué)生的線上學(xué)習(xí)情況,從該市中抽取1000名學(xué)生進行調(diào)査,根據(jù)所得信息制作了如圖所示的頻率分布直方圖.
(1)為了估計從該市任意抽取的3名同學(xué)中恰有2人線上學(xué)習(xí)時間在[200,300)的概率,特設(shè)計如下隨機模擬的方法:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),依次用0,1,2,3,…9的前若干個數(shù)字表示線上學(xué)習(xí)時間在[200,300)的同學(xué),剩余的數(shù)字表示線上學(xué)習(xí)時間不在[200,300)的同學(xué);再以每三個隨機數(shù)為一組,代表線上學(xué)習(xí)的情況.
假設(shè)用上述隨機模擬方法已產(chǎn)生了表中的30組隨機數(shù),請根據(jù)這批隨機數(shù)估計概率的值;
907 966 191 925 271 569 812 458 932 683 431 257 027 556
438 873 730 113 669 206 232 433 474 537 679 138 602 231
(2)為了進一步進行調(diào)查,用分層抽樣的方法從這1000名學(xué)生中抽出20名同學(xué),在抽取的20人中,再從線上學(xué)習(xí)時間[350,450)(350分鐘至450分鐘之間)的同學(xué)中任意選擇兩名,求這兩名同學(xué)來自同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com