如圖,在平面直角坐標(biāo)系中,設(shè)點
(
),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 過
、
分別作直線
、
,使
,
.
(1)求動點的軌跡
的方程;
(2)在直線上任取一點
做曲線
的兩條切線,設(shè)切點為
、
,求證:直線
恒過一定點;
(3)對(2)求證:當(dāng)直線的斜率存在時,直線
的斜率的倒數(shù)成等差數(shù)列.
(1).(2)利用導(dǎo)數(shù)法求出直線AB的方程,然后再利用直線橫過定點知識解決.(3)用坐標(biāo)表示出斜率,然后再利用等差中項的知識證明即可
【解析】
試題分析:(1)依題意知,點是線段
的中點,且
⊥
,
∴是線段
的垂直平分線.∴
.
故動點的軌跡
是以
為焦點,
為準(zhǔn)線的拋物線,其方程為:
.
(2)設(shè),兩切點為
,
由得
,求導(dǎo)得
.
∴兩條切線方程為 ①
②
對于方程①,代入點得,
,又
∴整理得:
同理對方程②有
即為方程
的兩根.
∴ ③
設(shè)直線的斜率為
,
所以直線的方程為
,展開得:
,代入③得:
∴直線恒過定點.
(3) 證明:由(2)的結(jié)論,設(shè),
,
且有,
∴
∴
=
又∵,所以
即直線的斜率倒數(shù)成等差數(shù)列.
考點:本題考查了拋物線與導(dǎo)數(shù)、數(shù)列的綜合考查
點評:解答拋物線綜合題時,應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達(dá)定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想的應(yīng)用
科目:高中數(shù)學(xué) 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com