【題目】已知定義在R上的連續(xù)函數(shù)f(x)滿足f(x)=f(2﹣x),導函數(shù)為f′(x).當x>1時,2f(x)+(x﹣1)f′(x)>0,且f(﹣1),則不等式f(x)<6(x﹣1)﹣2的解集為( )
A.(﹣1,1)∪(1,4)B.(﹣1,1)∪(1,3)
C.(,1)∪(1,2)D.(
,1)∪(1,
)
【答案】B
【解析】
利用已知條件,結(jié)合函數(shù)的性質(zhì),構(gòu)造函數(shù)g(x),通過函數(shù)的導數(shù)判斷函數(shù)的單調(diào)性,然后轉(zhuǎn)化求解即可得解.
定義在R上的連續(xù)函數(shù)f(x)滿足f(x)= f(2-x),導函數(shù)為f′(x).
當x>1時,2f(x)+(x-1)f′(x)>0,且f(-1),
令g(x)=(x-1)2f(x),則g′(x)=2(x-1)f(x)+(x-1)2f′(x)=(x-1)[2f(x)+(x-1)f′(x)],
所以當x>1時,g′(x)>0,且g(-1)=g(3)=6,
結(jié)合函數(shù)的圖象,可知不等式f(x)<6(x-1)﹣2的解集為(-1,1)∪(1,3).
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有下列四個命題:
p1:兩兩相交且不過同一點的三條直線必在同一平面內(nèi).
p2:過空間中任意三點有且僅有一個平面.
p3:若空間兩條直線不相交,則這兩條直線平行.
p4:若直線l平面α,直線m⊥平面α,則m⊥l.
則下述命題中所有真命題的序號是__________.
①②
③
④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為
(
為參數(shù)),
,
為曲線
上的一動點.
(I)求動點對應的參數(shù)從
變動到
時,線段
所掃過的圖形面積;
(Ⅱ)若直線與曲線
的另一個交點為
,是否存在點
,使得
為線段
的中點?若存在,求出點
坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知
、
分別為橢圓
的左、右焦點,直線
過點
且垂直于橢圓的長軸,動直線
垂直于直線
于點
,線段
的中垂線交
于點
.記點
的軌跡為曲線
.
(1)求曲線的方程,并說明
是什么曲線;
(2)若直線與曲線
交于兩點
、
,則在圓
上是否存在兩點
、
,使得
,
?若存在,請求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l過拋物線C:y2=4x的焦點F且與C交于A(x1,y1),B(x2,y2)兩點,則y1y2=_____.過A,B兩點分別作拋物線C的準線的垂線,垂足分別為P,Q,準線與x軸的交點為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S2﹣3|AF||BF|=_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的右焦點為F,離心率為
,且有3a2=4b2+1.
(1)求橢圓C的標準方程;
(2)過點F的直線l與橢圓C交于M,N兩點,過點M作直線x=3的垂線,垂足為點P,證明直線NP經(jīng)過定點,并求出這個定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象上有且僅有兩個不同的點關(guān)于直線
的對稱點在
的圖象上,則實數(shù)
的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓長軸長為4,右焦點
到左頂點的距離為3.
(1)求橢圓的方程;
(2)設(shè)過原點的直線交橢圓于
兩點(
不在坐標軸上),連接
并延長交橢圓于點
,若
,求四邊形
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com