【題目】如圖,多面體是正三棱柱(底面是正三角形的直棱柱)
沿平面
切除一部分所得,其中平面
為原正三棱柱的底面,
,點D為
的中點.
(1)求證:平面
;
(2)求二面角的平面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)設與
交于點E,連接
、
,由題意可得四邊形
是正方形,且
,再由點D為
的中點,
平行且等于
,求得CD,同理求得
,得
,可得
,由線面垂直的判定可得;
(2)取BC的中點O,連接AO,可得AO⊥BC,由正棱柱的性質可得AO⊥平面,以O為坐標原點,向量
、
、
分別為x、y,z軸建立空間直角坐標系,分別求出平面CBD與平面
的一個法向量,由兩法向量所成角的余弦值可得二面角
的平面角的余弦值.
(1)設與
交于點E,連接
、
.
∵多面體是正三棱柱沿平面
切除部分所得,
,
∴四邊形是正方形,且
.
∵點D為的中點,
平行且等于
,
∴.
同理,
∴.
∵E為的中點,
∴.
又∵,
,
∴平面
;
(2)取的中點O,連接
.
∵為正三角形,
.
由正棱柱的性質可得,平面平面
,
且平面平面
,
∴平面
.
以點O為原點,向量、
、
分別為x、y,z軸正方向建立如圖所示空間直角坐標系
.
則,
,
,
,
,
,
.
設平面的一個法向量為
,
則,
令,得
,
,即
.
由(1)可知,平面的一個法向量為
.
,
又∵二面角的平面角為銳角,
∴二面角的平面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】某地擬建造一座大型體育館,其設計方案側面的外輪廓如圖所示,曲線是以點
為圓心的圓的一部分,其中
;曲線
是拋物線
的一部分;
,且
恰好等于圓
的半徑.假定擬建體育館的高
(單位:米,下同).
(1)若,
,求
、
的長度;
(2)若要求體育館側面的最大寬度不超過
米,求
的取值范圍;
(3)若,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ
.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌奶茶公司計劃在A地開設若干個連鎖加盟店,經調查研究,加盟店的個數x與平均每個店的月營業額y(萬元)具有如下表所示的數據關系:
x | 2 | 4 | 6 | 8 | 10 |
y | 20.9 | 20.2 | 19 | 17.8 | 17.1 |
(1)求y關于x的線性回歸方程;
(2)根據(1)中的結果分析,為了保證平均每個加盟店的月營業額不少于14.6萬元,則A地開設加盟店的個數不能超過幾個?
參考公式:線性回歸方程中的斜率和截距的最小二乘估計公式分別為
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓
:
的焦距為
,直線
截圓
:
與橢圓
所得的弦長之比為
,橢圓
與
軸正半軸的交點分別為
.
(1)求橢圓的標準方程;
(2)設點(
且
)為橢圓
上一點,點
關于
軸的對稱點為
,直線
,
分別交
軸于點
,
.試判斷
是否為定值?若是求出該定值,若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數的圖象與x軸圍成一個封閉區域A(陰影部分),將區域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點,三棱錐
的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點D,當D在什么位置時,和
的夾角大小為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】華為董事會決定投資開發新款軟件,估計能獲得萬元到
萬元的投資收益,討論了一個對課題組的獎勵方案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,且獎金不超過
萬元,同時獎金不超過投資收益的
.
(1)請分析函數是否符合華為要求的獎勵函數模型,并說明原因;
(2)若華為公司采用模型函數作為獎勵函數模型,試確定正整數
的取值集合.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com