已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)求證.
解析:(Ⅰ)因?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091014/20091014170304001.gif' width=12 height=19>, x >0,則
, (1分)
當(dāng)時(shí),
;當(dāng)
時(shí),
.
所以在(0,1)上單調(diào)遞增;在
上單調(diào)遞減,
所以函數(shù)在
處取得極大值. (1分)
因?yàn)楹瘮?shù)在區(qū)間
(其中
)上存在極值,
所以 解得
. (2分)
(Ⅱ)不等式即為
記
所以 (1分)
令,則
, (1分)
,
在
上單調(diào)遞增, (1分)
,從而
,
故在
上也單調(diào)遞增, (1分)
所以,所以
. (1分)
(Ⅲ)又(Ⅱ)知:恒成立,即
, (1分)
令,則
,
所以 , (1分)
,
,
, (1分)
疊加得:
. (2分)
則,
所以
. (1分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù).
(1)若,求
的值;
(2)若對(duì)于
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省海林市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)若曲線與曲線
在它們的交點(diǎn)(1,c)處具有公共切線,求
,
的值;
(2)當(dāng),
時(shí),若函數(shù)
在區(qū)間[
,2]上的最大值為28,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)
已知函數(shù),
(1)若在
上的最大值為
,求實(shí)數(shù)
的值;
(2)若對(duì)任意,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,使得
是以
(
為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com