【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點M為棱A1B1的中點.
求證:(1)AB∥平面A1B1C;
(2)平面C1CM⊥平面A1B1C.
【答案】(1)見解析;(2)見解析
【解析】
(1)證明四邊形AA1B1B是平行四邊形,得出AB∥A1B1,故而AB∥平面A1B1C;
(2)由C1M⊥A1B1,CC1⊥B1A1,得出B1A1⊥平面C1CM,從而平面C1CM⊥平面A1B1C.
證明:(1)∵AA1∥BB1,AA1=BB1,
∴四邊形AA1B1B是平行四邊形,
∴AB∥A1B1,
又AB平面A1B1C,A1B1平面A1B1C,
∴AB∥平面A1B1C.
(2)由(1)證明同理可知AC=A1C1,BC=B1C1,
∵AB=BC,∴A1B1=B1C1,
∵M是A1B1的中點,
∴C1M⊥A1B1,
∵CC1⊥平面A1B1C1,B1A1平面A1B1C1,
∴CC1⊥B1A1,
又CC1∩C1M=C1,
∴B1A1⊥平面C1CM,
又B1A1平面A1B1C1,
∴平面C1CM⊥平面A1B1C.
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 |
|
|
|
|
|
|
晝夜溫差 | ||||||
就診人數 | 16 |
該興趣小組確定的研究方案是:先從這六組數據中選取組,用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是月與
月的兩組數據,請根據
至
月份的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右頂點為
,上頂點為
.已知橢圓的焦距為
,直線
的斜率為
.
(1)求橢圓的標準方程;
(2)設直線(
)與橢圓交于
,
兩點,且點
在第二象限.
與
延長線交于點
,若
的面積是
面積的
倍,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com