日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)y=f(x)是定義在R上的偶函數(shù),滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),給出下列關(guān)于函數(shù)y=f(x)的判斷:
①y=f(x)是周期函數(shù);
②y=f(x)的圖象關(guān)于直線x=1對稱;
③y=f(x)在[0,1]上是增函數(shù);
f(
12
)=0

其中正確判斷的序號是
 
.(把你認(rèn)為正確判斷的序號都填上)
分析:由題意y=f(x)是定義在R上的偶函數(shù),滿足f(x+1)=-f(x),可以知道該函數(shù)的周期為2,在利用f(x)為偶函數(shù)且在[-1,0]上為增函數(shù),可以由題意畫出一個(gè)草圖即可判斷.
解答:解:因?yàn)閒(x+1)=-f(x)  所以f(x+2)=-f(x+1)=f(x),由函數(shù)的周期定義可知該函數(shù)的周期為2,由于f(x)為定義在R上的偶函數(shù)且在[-1,0]上為單調(diào)遞增函數(shù),所以由題意可以畫出一下的函數(shù)草圖為:
精英家教網(wǎng)
由圖及題中條件可以得到:
①正確,周期T=2;
②由圖可以知道該函數(shù)關(guān)于x=1對稱,所以②正確;
③有已知條件 y=f(x)是定義在R上的偶函數(shù)且在[-1,0]上是增函數(shù),所以y=f(x)在[0,1]上為單調(diào)遞減函數(shù),故③錯(cuò);
④對于f(x+1)=-f(x),令x=-
1
2
,得到:f(
1
2
)=-f(-
1
2
)?f(
1
2
)=-f(
1
2
)
(因?yàn)楹瘮?shù)f(x)為偶函數(shù))∴f(
1
2
)=0
故④正確.
點(diǎn)評:此題考查了函數(shù)的周期性,對稱性及有抽象函數(shù)式子賦值的方法,還考查了學(xué)生對于抽象問題的具體化及數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是定義在區(qū)間(a,b)(b>a)上的函數(shù),若對?x1、x2∈(a,b),都有|f(x1)-f(x2)|≤|x1-x2|,則稱y=f(x)是區(qū)間(a,b)上的平緩函數(shù).
(1)試證明對?k∈R3,f(x)=x2+kx+14都不是區(qū)間(-1,1)5上的平緩函數(shù);
(2)若f(x)是定義在實(shí)數(shù)集R上的、周期為T=2的平緩函數(shù),試證明對?x1、x2∈R,|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是定義在R上的函數(shù),給定下列三個(gè)條件:
(1)y=f(x)是偶函數(shù);
(2)y=f(x)的圖象關(guān)于直線x=1對稱;
(3)T=2為y=f(x)的一個(gè)周期.
如果將上面(1)、(2)、(3)中的任意兩個(gè)作為條件,余下一個(gè)作為結(jié)論,那么構(gòu)成的三個(gè)命題中真命題的個(gè)數(shù)有
3
3
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請舉一例:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件,①f(-1)=f(1)=0,②對任意的u、v∈[-1,1],都有|f(u)-f(v)|≤|u-v|
(Ⅰ)證明:對任意x∈[-1,1],都有x-1≤f(x)≤1-x
(Ⅱ)證明:對任意的u,v∈[-1,1]都有|f(u)-f(v)|≤1
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x)且使得
|f(u)-f(v)|<|u-v|uv∈[0,
1
2
]
|f(u)-f(v)|=|u-v|uv∈[
1
2
,1]
;若存在請舉一例,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 欧美日本国产 | 国产女人和拘做受视频 | 天天操狠狠| 很黄很污的网站 | 绯色av一区二区三区在线高清 | 欧美三级免费观看 | 中国免费看的片 | 成人黄色在线 | 日韩一区不卡 | 亚洲一区二区在线 | 91在线播放视频 | 国产一区观看 | 99久久国产 | 久久精品免费视频观看 | 久热av中文字幕 | 成人精品一区二区三区中文字幕 | 精品日韩在线 | 久久精品国产77777蜜臀 | 日日操av | 国产精品网址 | 日本视频一区二区 | 亚洲综合在线一区 | 久久久精品国产 | 欧美乱码久久久久久蜜桃 | 高清av网站 | 国产精品成人国产乱一区 | 女人口述交换啪啪高潮过程 | 欧美一区二区三区精品 | 日批的视频 | 操夜夜| 欧美日韩精品在线一区 | 国产婷婷精品 | 精品国产一区二区三区久久久久久 | 亚洲日日操 | 日韩精品免费在线 | 国产精品.xx视频.xxtv | 中文字幕在线乱码不卡二区区 | 一区二区三区在线播放 | 色人人 | 超碰在线中文字幕 | 精品国产31久久久久久 |