【題目】在正方體中,
,以
為球心,
為半徑的球與棱
,
分別交于
,
兩點,則二面角
的正切值為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】共享單車是城市慢行系統的一種創新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20 000元,每生產一輛新樣式單車需要增加投入100元.根據初步測算,自行車廠的總收益(單位:元)滿足分段函數 其中x是新樣式單車的月產量(單位:輛),利潤=總收益-總成本.
(1)試將自行車廠的利潤y元表示為月產量x的函數;
(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內出芽數之間的關系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內的出芽數(如圖2)
根據上述數據作出散點圖,可知綠豆種子出芽數 (顆)和溫差
具有線性相關關系。
(1)求綠豆種子出芽數 (顆)關于溫差
的回歸方程
;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內的出芽數。
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點與其短軸的一個端點是等邊三角形的三個頂點,點
在橢圓上,直線
與橢圓交于
,
兩點,與
軸,
軸分別交于點
,
,且
,點
是點
關于
軸的對稱點,
的延長線交橢圓于點
,過點
,
分別作
軸的垂線,垂足分別為
,
.
(1)求橢圓的方程;
(2)是否存在直線,使得點
平分線段
?若存在,求出直線
的方程,若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線經過拋物線
的焦點且與此拋物線交于
,
兩點,
,直線
與拋物線
交于
,
兩點,且
,
兩點在
軸的兩側.
(1)證明:為定值;
(2)求直線的斜率的取值范圍;
(3)若(
為坐標原點),求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季大豆新品種發芽多少之間的關系進行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實驗室100顆種子中的發芽數,得到的數據如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發芽數y/顆 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取兩組,用剩下的三組數據求線性回歸方程,再對被選取的兩組數據進行檢驗.
(1)求選取的兩組數據恰好是不相鄰的兩天數據的概率.
(2)若選取的是12月1日和12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程.
(3)由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2,則認為得到的線性回歸方程是可靠的,據此說明(2)中所得線性回歸方程是否可靠?并估計當溫差為9 ℃時,100顆種子中的發芽數.
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在中,
,
,
,
、
分別是
、
上的點,且
,將
沿
折起到
的位置,使
,如圖2.
(Ⅰ)求證:平面
;
(Ⅱ)當長為多少時,異面直線
,
所成的角最小,并求出此時所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com