(本小題滿分13分) 設橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
(1);(2)S
。
解析試題分析:(1)因為橢圓E: (a>b>0)過M(2,
) ,2b=4
故可求得b=2,a=2 橢圓E的方程為
……2分
(2)設A(x1,y1),B(x2,y2),當直線L斜率存在時設方程為,
解方程組得
,即
,
則△=,
即(*)……………………4分
,
要使
,需使
,即
,
所以, 即
①………………………7分
將它代入(*)式可得……………………………8分
P到L的距離為
又
將及韋達定理代入可得
……………………10分
當時
由 故
……………12分
當時,
當AB的斜率不存在時, ,
綜上S……………………………13分
考點:本題主要考查橢圓標準方程,直線與橢圓的位置關系。
點評:求橢圓的標準方程是解析幾何的基本問題,涉及直線與橢圓的位置關系問題,常常運用韋達定理,本題屬于中檔題。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,
且。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
過拋物線焦點垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點F的直線交拋物線于
、
兩點。過
、
作準線的垂線,垂足分別為
、
.
(1)求出拋物線的通徑,證明和
都是定值,并求出這個定值;
(2)證明: .
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”。若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(Ⅰ)求橢圓的方程和其“準圓”方程.
(Ⅱ)點是橢圓
的“準圓”上的一個動點,過動點
作直線
使得
與橢圓
都只有一個交點,且
分別交其“準圓”于點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓M的中心為坐標原點 ,且焦點在x軸上,若M的一個頂點恰好是拋物線的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設點N(t,0)是一個動點,且,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(滿分10分)(Ⅰ) 設橢圓方程的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設直線
的斜率分別為
,求證
為定值并求出此定值;
(Ⅱ)設橢圓方程的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設直線
的斜率分別為
,利用(Ⅰ)的結論直接寫出
的值。(不必寫出推理過程)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com