【題目】下列有關線性回歸分析的四個命題:
①線性回歸直線必過樣本數據的中心點();
②回歸直線就是散點圖中經過樣本數據點最多的那條直線;
③當相關性系數時,兩個變量正相關;
④如果兩個變量的相關性越強,則相關性系數就越接近于
.
其中真命題的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ x2 , g(x)=
x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函數f(x)的單調遞增區間;
(Ⅱ)若關于x的不等式F(x)≤mx﹣1恒成立,求整數m的最小值;
(Ⅲ)若m=﹣1,且正實數x1 , x2滿足F(x1)=﹣F(x2),求證:x1+x2 ﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=log2(3-x).
(1)若g(x)=f(2+x)+f(2-x),判斷g(x)的奇偶性;
(2)記h(x)是y=f(3-x)的反函數,設A、B、C是函數h(x)圖象上三個不同的點,它們的縱坐標依次是m、m+2、m+4且m≥1;試求△ABC面積的取值范圍,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態度,隨機選取了140位市民進行調查,調查結果統計如下:
支持 | 不支持 | 總計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(I)根據已知數據,把表格數據填寫完整;
(II)利用(1)完成的表格數據回答下列問題:
(ⅰ)能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關;
(ⅱ)已知在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com