日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區域內 作答.解答應寫出文字說明、證明過程或演算步驟.
A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數與線段AE的長.
B.已知二階矩陣A=
2a
b0
屬于特征值-1的一個特征向量為
1
-3
,求矩陣A的逆矩陣.

C.已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數方程為
x=-
3
t
y=1+t
(t為參數,t∈{R}).試求曲線C上點M到直線l的距離的最大值.
D.(1)設x是正數,求證:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.
分析:A.由題意,連接OC,可得△ACB是含有60°角的直角三角形,結合切線的性質和等邊對等角算出∠DAC的度數,進而根據BC=3算出線段AE的長.
B.根據特征向量的定義,用待定系數法可求出矩陣A的值,再用逆矩陣的公式即可求出矩陣A的逆矩陣.
C.分別將曲線C與直線l化成普通方程,然后將直線l平移到與曲線C相切,即可得到與l較遠的切線到l的距離即為所求.
D.(1)利用基本不等式,結合同向兩個不等式相乘,即可得到(1+x)(1+x2)(1+x3)≥8x3成立;
(2)分兩種情況:x為正數和x為負數或零加以討論,并結合因式分解判斷積的符號,不難得到對任意x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3仍然成立.
解答:解:A.如圖,連接OC,可得BC=OB=OC=3,
因此∠CBO=60°,由于∠DCA=∠CBO,
所以∠DCA=60°,結合AD⊥DC得∠DAC=30°.
又因為∠ACB=90°,得∠CAB=30°,所以∠EAB=60°,
從而∠ABE=30°,于是AE=
1
2
AB=3.
B.根據題意,得
2a
b0
1
-3
=
1
-3
,即
2-3a
b
=
1
-3
,可得
2-3a=1
b=-3
,解之得a=
1
3
,b=-3
A=
2
1
3
-30
,再由逆矩陣公式可得A的逆矩陣為A-1=
0-
1
3
32

C.將曲線C的極坐標方程化成普通方程,得
x2
3
+y2=1

直線l的普通方程為:x+
3
y
-
3
=0

設動直線m:x+
3
y
+n=0,與曲線C相切,
聯解
x2
3
+y2=1
x+
3
y+n=0
,由根的判別式,解得n=±
6

檢驗得當n=
6
時,直線m與曲線C的切點到直線l的距離最大,
這個最大距離為d=
|
6
+
3
|
1+3
=
3
+
6
2

∴曲線C上點M到直線l的距離的最大值是
3
+
6
2

D.(1)∵x是正數,∴1+x≥2
x
,1+x2≥2x,1+x3≥2
x3

由于以上3個不等式的兩邊都是正數,所以將它們相乘可得:
(1+x)(1+x2)(1+x3)≥2
x
•2x•2
x3
=8x3
即不等式:(1+x)(1+x2)(1+x3)≥8x3對任意正數x恒成立;
(2)①當x>0時,由(1)的結論可得(1+x)(1+x2)(1+x3)≥8x3成立;
②當x≤0時,(1+x)(1+x2)(1+x3)=(1+x)2(1+x2)(1-x+x2)=(1+x)2(1+x2)[(x-
1
2
2+
3
4
]
而(1+x)2>0,1+x2>0且(x-
1
2
2+
3
4
3
4
>0,可得(1+x)(1+x2)(1+x3)>0
因為8x3≤0,所以(1+x)(1+x2)(1+x3)>8x3
綜上所述,對任意x∈R,都有不等式(1+x)(1+x2)(1+x3)≥8x3成立.
點評:本題通過幾道解答題,考查了參數方程與極坐標、矩陣變換、不等式的證明和平面幾何證明等理科附加知識的掌握,屬于綜合性較強的中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標系與參數方程
已知橢圓C的極坐標方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實數a的值.
D選修4-4:不等式選講
已知函數f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實數)的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區域內作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數a,b的值;
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=1+
4
5
y=-1-
3
5
(t為參數),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設a,b,c均為正實數.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點A,D為PA的中點,過點D引割線交⊙O于B、C兩點.求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區域內作答,解答時應寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數,如果矩陣M=
1a
b2
所對應的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標系與參數方程)
設M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設a,b,c是不完全相等的正數,求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区日韩 | 欧美成人午夜精品久久久 | 国产黄色在线免费看 | 亚洲电影一区二区 | 欧美亚洲性视频 | 色视频网站在线观看 | 91视频日韩 | 99精品久久久久久久免费看蜜月 | 高清国产一区二区三区 | 在线污污 | 国产精品久久久久一区二区三区 | 久久精品久久精品国产大片 | 欧美日韩中文字幕 | 久久久久国产亚洲日本 | 亚洲国产精品一区 | 天天干天操 | 国产午夜精品一区二区三区 | 亚洲 欧美 综合 | 黄色羞羞视频在线观看 | 91天堂 | 久久国产精品视频 | 日本三级网址 | 欧美色影院 | 午夜视频网址 | 日韩欧美综合在线 | 亚洲精品电影在线观看 | 99久久精品国产一区二区成人 | 成人黄色免费网址 | 亚洲精品乱码8久久久久久日本 | 成人免费视频在线观看 | www.亚洲一区 | 色综合久久88色综合天天6 | 日本在线免费 | 亚洲+变态+欧美+另类+精品 | 国产精品一区二区免费视频 | 欧美日韩激情在线 | 不卡视频一区 | 国产一区二区观看 | 国产一级大片 | 中文字幕日韩一区二区 | 国产日韩欧美亚洲 |