【題目】已知函數f(x)=
(1)證明f(x)是奇函數;
(2)判斷f(x)的單調性,并用定義證明
(3)求f(x)在[1,2]上的最值.
【答案】解:(1)由于函數f(x)=的定義域為R,f(﹣x)=
=
=﹣f(x),
故函數f(x)為奇函數.
(2)由于f(x)==
=1﹣
,設x1<x2 , 則
<
,
根據f(x1)﹣f(x2)=[1﹣]﹣[1﹣
]=
﹣
==
<0,∴f(x1)<f(x2),
故函數f(x)在R上為增函數.
(3)在[1,2]上,函數f(x)為增函數,故當x=1時,函數f(x)取得最小值為,
當x=2時,函數f(x)取得最大值為.
【解析】(1)由條件利用奇函數的定義進行判斷,可得結論.
(2)由條件利用函數的單調性的定義進行證明,可得結論.
(3)由條件利用函數的單調性求得f(x)在[1,2]上的最值.
【考點精析】解答此題的關鍵在于理解奇偶性與單調性的綜合的相關知識,掌握奇函數在關于原點對稱的區間上有相同的單調性;偶函數在關于原點對稱的區間上有相反的單調性,以及對三角函數的最值的理解,了解函數,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
.
科目:高中數學 來源: 題型:
【題目】某蛋糕店每天做若干個生日蛋糕,每個制作成本為50元,當天以每個100元售出,若當天白天售不出,則當晚以30元/個價格作普通蛋糕低價售出,可以全部售完.
(1)若蛋糕店每天做20個生日蛋糕,求當天的利潤(單位:元)關于當天生日蛋糕的需求量
(單位:個,
)的函數關系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個)整理得下表:
(。┘僭O蛋糕店在這100天內每天制作20個生日蛋糕,求這100天的日利潤(單位:元)的平均數;
(ⅱ)若蛋糕店一天制作20個生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當天利潤不少于900元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果數據x1 , x2 , …,xn的平均數是 ,方差是S2 , 則2x1+3,2x2+3,…,2xn+3的平均數和方差分別是( )
A. 和S
B.2 +3和4S2
C. 和S2
D. 和4S2+12S+9
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標平面中, 的兩個頂點為
,平面內兩點
、
同時滿足:①
;②
;③
.
(1)求頂點的軌跡
的方程;
(2)過點作兩條互相垂直的直線
,直線
與點
的軌跡
相交弦分別為
,設弦
的中點分別為
.
①求四邊形的面積
的最小值;
②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x+4my+4m2=0,圓C1:x2+y2=25,以及直線l:3x﹣4y﹣15=0.
(1)求圓C1:x2+y2=25被直線l截得的弦長;
(2)當m為何值時,圓C與圓C1的公共弦平行于直線l;
(3)是否存在m,使得圓C被直線l所截的弦AB中點到點P(2,0)距離等于弦AB長度的一半?若存在,求圓C的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(Ⅰ)求點的坐標;
(Ⅱ)證明直線恒過定點,并求這個定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于( 。
A.{x|x或x>1}
B.{x|x
1}
C.{x|x≤或x
1}
D.{x|≤x≤1}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com