【題目】已知點的坐標分別為
,
.三角形
的兩條邊
,
所在直線的斜率之積是
.
(1)求點的軌跡方程;
(2)設直線方程為
,直線
方程為
,直線
交
于
,點
,
關于
軸對稱,直線
與
軸相交于點
.若
的面積為
,求
的值.
【答案】(1)(2)
【解析】
(1)本題可以先將點的坐標設出,然后寫出直線
的斜率與直線
的斜率,最后根據
、
所在直線的斜率之積是
即可列出算式并通過計算得出結果;
(2)首先可以聯立直線的方程與直線
的方程,得出點
兩點的坐標,然后聯立直線
的方程與點
的軌跡方程得出
點坐標并寫出直線
的方程,最后求出
點坐標并根據三角形面積公式計算出
的值。
(1)設點的坐標為
,因為點
的坐標分別為
、
,
所以直線的斜率
,直線
的斜率
,
由題目可知,化簡得點
的軌跡方程
;
(2)直線的方程為
,與直線
的方程
聯立,
可得點,故
.
將與
聯立,消去
,整理得
,
解得,或
,根據題目可知點
,
由可得直線
的方程為
,
令,解得
,故
,
所以,
的面積為
又因為的面積為
,故
,
整理得,解得
,所以
。
科目:高中數學 來源: 題型:
【題目】若非負整數m、n在求和時恰進位一次(十進制下),則稱有序數對(m、n)為“好的”,那么,所有和為2014的好的有序數對的個數為__________。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率是
,過點
做斜率為
的直線
,橢圓
與直線
交于
兩點,當直線
垂直于
軸時
.
(Ⅰ)求橢圓的方程;
(Ⅱ)當變化時,在
軸上是否存在點
,使得
是以
為底的等腰三角形,若存在求出
的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點的坐標分別為
,三角形
的兩條邊
所在直線的斜率之積是
.
(I)求點的軌跡方程;
(II)設直線方程為
,直線
方程為
,直線
交
于
,點
關于
軸對稱,直線
與
軸相交于點
,求
面積
關于
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,且離心率為
,過其右焦點F的直線
交橢圓C于M,N兩點,交y軸于E點.若
,
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為(t為參數,0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(Ⅰ)寫出曲線C的直角坐標方程;
(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數學期末考試成績.
甲班 | 乙班 | 合計 | |
優秀 | |||
不優秀 | |||
合計 |
現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績為87分的同學至少有一名被抽中的概率;
(II)學校規定:成績不低于75分的為優秀.請填寫下面的2×2列聯表,并判斷有多大把握認為“成績優秀與教學方式有關”.
下面臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現對某市工薪階層關于“樓市限購令”的態度進行調查,隨機抽調了50人,他們月收入的頻數分布及對“樓市限購令”贊成人數如下表.
月收入(單位百元) | ||||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統計數據填下面2×2列聯表,并問是否有99%的把握認為“月收入以5500元為分界點對“樓市限購令”的態度有差異;
月收入不低于55百元的人數 | 月收入低于55百元的人數 | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區間段的被調查者中隨機抽取2人,恰有1位是贊成者的概率。
參考公式:,其中
.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,
均垂直于平面
,
,
,
,
.
(1)過的平面
與平面
垂直,請在圖中作出
截此多面體所得的截面,并說明理由;
(2)若,
,求多面體
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com