日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=a•3x+b•5x,其中a,b∈R且ab≠0.
(1)若a>0,b<0,求使f(x+1)>f(x)成立的x的取值范圍;
(2)若a=1,討論f(x)的單調性.
分析:(1)若a>0,b<0,由f(x+1)>f(x)可得 (
5
3
)
x
<-
a
2b
,由此解得x的范圍.
(2)若a=1,f(x)=3x+b•5x,當b>0時,函數f(x)在R上是增函數.當b<0時,根據f′(x)>0求得x的范圍,可得函數的增區間;再根據f′(x)<0,解得x的范圍,可得函數的減區間.
解答:解:(1)若a>0,b<0,由f(x+1)>f(x)可得a•3x+1+b•5x+1>a•3x+b•5x
(
5
3
)
x
<-
a
2b
,x<log
5
3
(-
a
2b
)

(2)若a=1,f(x)=3x+b•5x
當b>0時,函數f(x)在R上是增函數.
當b<0時,令f′(x)>0可得 (
5
3
)
x
<-
ln3
bln5
,解得x<log
5
3
(-
ln3
b•ln5
)

令f′(x)<0可得 (
5
3
)
x
>-
ln3
bln5
,解得x>log
5
3
(-
ln3
b•ln5
)

故函數f(x)在(-∞,log
5
3
(-
ln3
b•ln5
)
 )上是增函數,在(log
5
3
(-
ln3
b•ln5
)
,+∞)上是減函數.
點評:本題主要考查指數不等式、對數不等式的解法,利用導數研究函數的單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
(1)若已知
a
b
,求tanx的值
(2)若已知f(x)=
a
b
,求f(x)的最大值及取得最大值的x的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=2x+3,g(x+2)=f(x),則g(x)等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
p
=(x,a-3),
q
=(x,x+a),f(x)=
p
q

(Ⅰ)若方程f(x)=0在區間(1,+∞)上有兩實根,求實數a的取值范圍;
(Ⅱ)設實數m、n、r滿足:m、n、r中的某一個數恰好等于a,且另兩個恰為方程f(x)=0的兩實根,判斷①m+n+r,②m2+n2+r2,③m3+n3+r3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數g(a),并求g(a)的最小值;
(Ⅲ)給定函數h(x)=bx+1(b>0),若對任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=mx2+3(m-4)x-9(m∈R).
(1)試判斷函數f(x)的零點的個數;
(2)若函數f(x)有兩個零點x1,x2,求d=|x1-x2|的最小值;
(3)若m=1,且不等式f(x)-a>0對x∈[0,2]恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•濰坊一模)已知f(x)=a(x+2a)(x-a-3),g(x)=2-x-2,同時滿足以下兩個條件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(1,+∞),f(x)•g(x)<0成立,
則實數a的取值范圍是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日一级片 | 91小视频网站 | 狠狠操狠狠摸 | 日本免费黄色 | 久久久久久久久久久免费视频 | 一级做a毛片 | 黄篇网址 | 久草福利 | 日韩欧美综合 | 成人国产精品一区 | 婷婷色网站 | 在线观看91精品国产入口 | 免费在线色| 日韩一二三区视频 | 国产激情视频在线观看 | 免费的av网站 | 欧美日韩在线二区 | 国产精品毛片无码 | 日本精品一区二区三区在线观看视频 | 一区二区在线看 | 99久久视频 | 国产精品久久久视频 | 国产精品99 | 2021狠狠干 | 在线亚洲一区二区 | 性做久久久久久久免费看 | 成人国产精品久久久 | 91精品国产aⅴ| 日本在线观看视频 | 韩国精品一区二区三区 | 成人h动漫精品一区二区器材 | 射射影院| 自拍偷拍一区二区三区 | 9999亚洲| 国产91精品一区二区麻豆网站 | 欧美成人久久 | 精品不卡| 日韩精品一级 | 久久精品无码一区二区日韩av | 国产小视频在线观看 | 91在线电影 |