【題目】已知是橢圓
的左、右焦點,點
在橢圓
上,線段
與
軸的交點
滿足
.
(1)求橢圓的標準方程;
(2)過點作不與
軸重合的直線
,設
與圓
相交于
兩點,與橢圓相交于
兩點,當
且
時,求
的面積
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有10000人,其中男生7500人,女生2500人,為調查該校學生每則平均體育運動時間的情況,采用分層抽樣的方法,收集200位學生每周平均體育運動時間的樣本數據(單位:小時).調查部分結果如下列聯表:
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | 35 | ||
每周平均體育運動時間超過4小時 | 30 | ||
總計 | 200 |
(1)完成上述每周平均體育運動時間與性別的列聯表,并判斷是否有
把握認為“該校學生的每周平均體育運動時間與性別有關”;
(2)已知在被調查的男生中,有5名數學系的學生,其中有2名學生每周平均體育運動時間超過4小時,現從這5名學生中隨機抽取2人,求恰有1人“每周平均體育運動時間超過4小時”的概率.
附:,其中
.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐與三棱錐
中,
和
都是邊長為2的等邊三角形,
分別為
的中點,
,
.
(Ⅰ)試在平面內作一條直線
,當
時,均有
平面
(作出直線
并證明);
(Ⅱ)求兩棱錐體積之和的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com