日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN∥平面BCE;
(2)當AM=FN=
2
  時,求MN的長度.
分析:(1)證法一:(線面平行的判定定理法)作MP⊥BC,NQ⊥BE,P、Q為垂足,連接PQ,先證出Rt△MCP≌Rt△NBQ,進而得到四邊形MPQN為平行四邊形.則MN∥PQ,再由線面平行的判定定理得到答案.
證法二:(面面平行的性質法)過M作MH⊥AB于H,連接NH,由面面平行的判定定理證明出平面MNH∥平面BCE,進而由面面平行的性質得到MN∥平面BCE;
(2)當AM=FN=
2
時,根據(1)中比例關系,我們可又求出MH,NH的長,解Rt△MNH可得答案.
解答:證明:(1)證法一:(線面平行的判定定理法)
如圖一,作MP⊥BC,NQ⊥BE,P、Q為垂足,連接PQ,
則MP∥AB,NQ∥AB.
所以MP∥NQ,
又AM=NF,AC=BF,
所以MC=NB.
又∠MCP=∠NBQ=45°,
所以Rt△MCP≌Rt△NBQ,
所以MP=NQ.
故四邊形MPQN為平行四邊形.
所以MN∥PQ.…..(4分)
因為PQ∥平面BCE,MN∥平面BCE,
所以MN∥平面BCE…..(6分)
法二:如圖二,過M作MH⊥AB于H,則MH∥BC.
所以
AM
AC
=
AH
AB

連接NH,由BF=AC,FN=AM,得
FN
FB
=
AH
AB
,
所以NH∥AF∥BE.…..(2分)
又∵NH∩BH=H,BC∩BE=B,NH,BH?平面MNH,BC,BE?平面BCE
∴平面MNH∥平面BCE…..(4分)
因為MN?平面MNH,
所以MN∥平面BCE.…..(6分)
(2)如圖二,∵AM=FN=
2

由比例關系易得:
AM
AC
=
FN
FB
=
AH
AB
=
MH
BC
=
1
3
,
∴在Rt△ABC中,MH=1,
在Rt△ABF中,NH=2,
∴在Rt△MNH中,MN=
5
.…..(12分)
點評:本題考查的知識點是直線與平面平行的判定,點到點的距離的計算,其中熟練掌握空間線面關系證明的不同方法是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN平面BCE;
(2)當AM=FN=
2
  時,求MN的長度.
精英家教網

查看答案和解析>>

科目:高中數學 來源:2012-2013學年四川省成都市樹德中學高二(上)期中數學試卷(文科)(解析版) 題型:解答題

兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN∥平面BCE;
(2)當AM=FN=  時,求MN的長度.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年四川省成都市樹德中學高二(上)期中數學試卷(理科)(解析版) 題型:解答題

兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN∥平面BCE;
(2)當AM=FN=  時,求MN的長度.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年四川省成都市樹德中學高二(上)期中數學試卷(文科)(解析版) 題型:解答題

兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN∥平面BCE;
(2)當AM=FN=  時,求MN的長度.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 男男巨肉啪啪动漫3d | 国产精品99久久久久久www | 天天碰天天操 | 日本一区二区不卡视频 | 久久成人国产 | 91成人精品一区在线播放 | 亚洲午夜18毛片在线看 | 天天色天天色 | 久草手机在线视频 | 国产成人精品亚洲男人的天堂 | 色一情一乱一乱一区91av | 欧美激情三区 | 亚洲视频国产 | 中文字幕观看 | 一级免费毛片 | 伊人黄色 | 午夜时刻免费入口 | 黄色福利视频 | 激情影院在线观看 | 欧美精品福利 | 国产亚洲视频在线观看 | 亚洲激情欧美激情 | 99久久久精品 | 国产精品剧情 | 人人草在线视频 | 亚洲精品美女 | www.三级| 欧美日韩亚洲视频 | 欧美人xxxx| 亚洲精品一区二三区 | 久久精品免费观看 | 欧美黄色片网站 | 天堂网久久 | 日本一区二区不卡视频 | 日韩在线中文字幕 | 亚洲免费网站 | 在线播放一区 | 日韩三级一区 | 久久久精品在线观看 | 亚洲精品一区二区在线观看 | 久久久久亚洲精品 |