日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

如圖,已知四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD,

(1)證明:AB⊥PD;

(2)在線段PB上找出一點E,使AE∥平面PCD,指出點E的位置并加以證明;

答案:
解析:

E為中點


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美在线观看不卡 | 欧美精品一区三区 | 国产精品第一区第27页 | 精品国产乱码久久久久久久软件 | 欧美黄色一区二区 | 国产精品无码专区在线观看 | 91精品国产综合久久久蜜臀图片 | 91久久国产精品 | 日韩一二三区视频 | 久久精品毛片 | 色吊丝2288sds中文字幕 | 97人人人 | 国产欧美精品区一区二区三区 | 免费福利片2019潦草影视午夜 | 国产精品一区二区在线免费观看 | 色com| 在线欧美成人 | 欧美日韩专区 | www.久久.com | 国产精品乱码一区二区三区 | 成人精品视频在线观看 | 日韩成人在线播放 | 日本黄色片在线观看 | 免费国产黄网站在线观看视频 | 国产色在线观看 | 国产欧美精品 | 精品一区二区三区蜜桃 | 午夜三区 | 日韩色综合| 日本不卡免费新一二三区 | 一级毛片免费看 | 9999精品| 欧美在线亚洲 | 91精品久久久久久久久久入口 | 亚洲午夜精品 | 日韩av在线中文字幕 | 欧美日韩成人在线 | 欧美一区2区三区3区公司 | 国产久 | 欧美卡一卡二 | 成人区一区二区三区 |