日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sin(ωx+
π
3
)(ω>0),將函數y=f(x)的圖象向右平移
2
3
π
個單位長度后,所得圖象與原函數圖象重合ω最小值等于(  )
分析:函數y=sin(ωx+
π
3
)的圖象向右平移
2
3
π
個單位后與原圖象重合可判斷出
2
3
π
是周期的整數倍,由此求出ω的表達式,判斷出它的最小值.
解答:解:∵函數y=sin(ωx+
π
3
)的圖象向右平移
2
3
π
個單位后與原圖象重合,
2
3
π
=n×
ω
,n∈z
∴ω=3n,n∈z
又ω>0,故其最小值是3.
故選B.
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,本題判斷出是周期的整數倍,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當的說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-blnx在(1,2]是增函數,g(x)=x-b
x
在(0,1)為減函數.
(1)求b的值;
(2)設函數φ(x)=2ax-
1
x2
是區間(0,1]上的增函數,且對于(0,1]內的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數方程為
x=t-3
y=
3
 t
(t為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 夜夜骚| 成人精品 | 精品久久久久久久久久 | 一本一道久久a久久精品蜜桃 | 最新免费av网站 | 在线免费一级片 | 亚洲一区成人 | 欧美日韩不卡合集视频 | 欧美h视频| 国产成人网 | 日韩欧美国产一区二区 | 在线一区二区三区四区 | 国产在线一区二区 | 先锋影音在线观看 | 久久久www成人免费精品 | 国产日韩视频在线观看 | 国产精品久久久久久久粉嫩 | 九九久久久 | 久草热视频 | 国产一区二区视频在线观看 | 亚洲日本乱码在线观看 | 久久亚洲国产精品 | 久久久久久亚洲 | 久久精品视频免费 | 黄色在线观看网站 | 成人一区久久 | 日本免费在线观看 | 国产午夜精品一区二区三区视频 | 日韩精品在线一区二区 | 一区二区三区日韩在线 | 久久国产精品视频 | 国变精品美女久久久久av爽 | 精品91| 你懂的网址在线 | 精品网站999www | 亚洲综合99 | 九九免费观看全部免费视频 | 黄色网址在线免费观看 | 亚洲精品久久久久久久久久久 | 在线视频 亚洲 | 日本精品久久 |